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Abstract Given a sequence of natural numbers, we lay the foundations for automatically
synthesizing a program that generates this sequence.

Techniques for synthesizing programs have been developed in the course of the last thirty
years [3] in the domain of inductive logic programming. The subjects studied cover recursion,
higher-order programs, optimal programs and library building. In parallel, program synthesis
tasks have been attempted by reinforcement learning. Most recent developments have imple-
mented additional features on top of the learning loop such as a library building mechanism [4]
or inputs from a deductive reasoning system [2]. We as well have investigated how to synthesize
mathematical objects, that could be considered programs such as: combinators [5], Diophantine
equations [5] and set theory formulas [1].

The aim of our project is to automatically construct a program that generates a given
sequence of natural numbers. Mastering this task would have important implications. Indeed,
finding a ”small” program matching a partial sequence would produce a powerful predictive
model. Such automation could be applied any time a scientist is confronted with some unknown
data representable with natural numbers. To train the automation, we will rely on a set of
natural number sequences collected by mathematicians available in the online encyclopedia of
integer sequences (OEIS)[6]. Indeed, there are currently 343338 integer sequences in the OEIS,
325191 of which only contain natural numbers. Some of the sequences in this dataset are simple
such as the sequence of squares A000290. Others are related to open problems. For example, if
the sequence A073101 : [1, 1, 2, 5, 5, 6, 4, 9, 7, 15, 4, 14, 33, . . .] contains 0 then the Erdős-Strauss
conjecture is false. For this reason, this problem set is ideal as it provides a gradual learning
curve and a large pool of interesting objectives. If a significant portion of the problems is solved,
this will indicate that the automation has acquired an understanding of the programming task.

Design of the Programming Language Our language is inspired by the language of re-
cursive functions defined in computability theory. It contains the projections represented by
variables in the examples and the basic operators 0, 1,+,−,×,modulo, division, a conditional
operator if(a, b, c) that tests if a is equal to 0 and returns b and otherwise returns c, and recur-
sive calls. This language is designed to be expressive enough to construct functions generating
interesting sequences in a natural way. By synthesizing a function f from N to N, we can gener-
ate the sequence of elements f(n) for n ∈ N. For example, a program generating the Fibonacci
sequence A000045 can be written as:

f(n) := if n = 0 then 0 else if n− 1 = 0 then 1 else f(n− 1) + f((n− 1)− 1)

Using a subprogram g, we can also get a program with linear time complexity:

g(a, b, c) := if a = 0 then b else g(a− 1, c, b + c) f(n) := g(n, 0, 1)
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Synthesis Strategy There are many ways to explore the space of programs just defined.
Since programs can be represented as trees, we propose to use a bottom-up approach relying
on a stack of program trees as intermediate synthesis steps. The synthesis process starts with
an empty stack and updates the program stack depending on the operator chosen as illustrated
on the following example:

[ ]→ [n]→ [n− 1]→ [f(n− 1)]→ [n, f(n− 1)]→ [n + f(n− 1)]→

[0, n + f(n− 1)]→ [n, 0, n + f(n− 1)]→ [if n = 0 then 0 else n + f(n− 1)]

After each synthesis step that ends with a single program tree t in the stack, we check if the
program f(n) := t generates the targeted sequence. When executing f(i) we limit the number
of execution steps to 30× (i+ 1)3 . This bound was chosen to allow the program to run longer
for larger input but only in a cubic manner. Therefore, in general programs with exponential
complexity will not be synthesized.

Programs in the stack are complete trees and therefore can be defined by their behavior on
the inputs which may facilitate learning their embeddings. In contrast, in a top-down approach
the partially synthesized program trees have open branches and thus more complex semantics.

Reinforcement Learning We rely on the deep reinforcement learning framework developed
in [5] to train a machine learning model (tree neural networks) on how to select the right
synthesis step given learned embeddings for the current program stack and the a prefix of the
targeted sequence (first 16 elements). At each generation, a pool of 200 sequences is targeted.
The TNN learns from each attempt and re-uses this knowledge for the next generation.

Test Run The framework was tested on a set of 2000 sequences generated from random
programs of size less or equal to 30. It was run for 200 generations. After that time, the system
had synthesized programs for most of the sequences (first 16 elements).

Conclusion For the described synthesis task, we have designed a small but expressive pro-
gramming language, have chosen a suitable synthesis strategy and have started testing a rein-
forcement learning framework. In the future, we would like to scale this approach on the OEIS
and improve it by incorporating data augmentation techniques, library building mechanisms
and deductive reasoning abilities.
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