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Introduction Even though satisfiability-modulo-theories (SMT) solvers were mainly focused
on solving quantifier-free first-order problems, many of them currently support quantified for-
mulas. The main technique used in SMTs to handle quantifiers is quantifier instantiation. In
this approach the solver intersperses generating ground instances of the quantified formulas and
attempts to find a model for the ground formulas. Whenever a model is found, new ground
instances are generated. This process continues until a contradiction is found at the ground
level (which refutes the problem) or computational resources are exhausted.

A large majority of the instantiations produced during the search are not used in the final
proof. The challenge is to produce useful instantiations, i.e., instantiations which are likely to
contribute to the proof. One of the strategies to find these instances is enumerative instanti-
ation [5]. Here, quantified variables in formulas are substituted with candidate ground terms.
The set of these terms is induced by the ground model found in the last iteration of the main
loop of the algorithm. This set is ordered using some predefined term ordering. In CVC5 this
order is determined by age, i.e., the terms that exist longer in the formula are used first.

In our work we implement a machine-learning (ML) guidance for term-selection for the in-
stantiations. More precisely, we use a machine-learned, formula-dependent term-scoring func-
tion in place of the predefined term ordering.

This is closely related to the work presented at AITP 2019 [2]. There, the authors also
experimented with machine-learned guidance for term-selection for instantiations. However,
their setting was substantially different. In particular, their machine-learned function served as
a binary filter on a set of terms, not as a scoring function inducing an ordering. Moreover, their
implementation was impractically slow. We show that the ML-guided SMT solver has improved
proving performance when compared to the unguided solver with the same time limit.

Implementation As a basis for our experiments we use a well-established and efficient SMT-
solver – CVC5 [1]. To model the term-scoring function we use the LightGBM toolkit [3]. It
efficiently implements a versatile and powerful ML algorithm – the gradient boosted trees. The
scoring function S : F → [0, 1] takes as its argument features F (φ, t) of a pair of the quantified
formula φ and the candidate term t which may be used for instantiation. The returned score is
intended to reflect how likely it is that φ instantiated with t will be used in the final proof.

As features of (φ, t) pairs we use information extracted from CVC5. For every symbol
appearing in terms and formulas CVC5 determines its kind. These kinds include, e.g., variable,
skolem, not, and, plus, forall, etc. We use these syntactic kinds to define a bag-of-words-
type featurizer BOW(x), where x is a term or a formula, and the information returned by
BOW consists of counts of kinds of symbols appearing in x1. Additionally, we use 6 numerical
features describing the candidate terms: varFrequency, age, phase, relevant, depth, and tried.
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1For example, BOW(∀x 2 + x = skl1 + 3) = {forall : 1, variable: 1, const : 2, skolem : 1, plus : 2}.
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varFrequency represent the number of times the variable occurs in the quantifier; age and phase
measure how long the term has been in the candidate pool, with age being a more fine-grained
measure. depth indicates the tree depth of the term. These, together with a disjoint union of
BOW(φ) and BOW(t) constitute the features F (φ, t) being an input for the scoring function.

Experiments For evaluation we use SMT-LIB problems from the UFNIA/sledgehammer
category. Problems solvable by CVC5 without doing any instantiations are filtered out.

First, we grid-search hyper-parameters for training LightGBM model on a random split.
The selected ones are: num trees = 50, learning rate = 0.1, num leaves = 32, max depth = 10.

Then a looping-style evaluation is run (similar to [4, 6]). In the first iteration, an unguided
SMT-solver is run on the benchmark and data extracted from the solved problems is used to
train the ML model. Then, the model is used to guide the solver in the next iteration of solving
the benchmark. The success rate is recorded and examples extracted from the newly solved
problems are added to the training set. This solving-training procedure is repeated 20 times.
The time limit for each solving attempt is limited to 120 s.

We use three metrics of a success: (1) a number of problems solved in the current iteration,
(2) a cumulative number of problems solved so far, (3) an average number of instantiations
generated by the solver in the current iteration (it may be seen as an abstract running time).

An ablation study is done by comparing to the standard solver with random perturbations,
where the terms ordered by the predefined ordering are randomly swapped with probability 0.1.

The results of the looping evaluation in terms of the metrics (1-3) are presented in Figure 1.
The ML-guided solver at the end of the loop is better than the randomized one with respect to
all the metrics. Importantly, we see a growing trend in the number of problems solved by the
ML-guided solver in individual iterations. However, there is quite high variance in this statistic.

Figure 1: Statictics from the looping evaluation on the UFNIA Sledgehammer problems. The
ML-guided solver (blue) vs the standard solver with randomly perturbated term orderings (red).

Conclusions and future work We show that ML guidance can be effectively used to guide
instantiation within CVC5. There are many possible directions for future work. One of the
most important areas for improvement is the treatment of cases where multiple variables in
one formula need to be instantiated. Currently we handle each quantifier independently, while
a more sophisticated method that takes into account the relations between quantifiers is more
natural for the problem. For this, a way to score tuples of terms to instantiate with instead of
single terms is needed. This will require training a tuple-scoring function and implementing a
search procedure guided by this function, like A* search algorithm or a beam-search.
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