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In formal mathematics there is a demand for readable or natural input languages. The
Formal Abstracts project of Thomas Hales [3] proposes to

e give a statement of the main theorem of each published mathematical paper in a language
that is both human- and machine-readable,

e link each term in theorem statements to a precise definition of that term (again in both
human- and machine-readable form).

Ideally, the language of Formal Abstracts is part of the common natural language for math-
ematics, including symbolic terms, and — at the same time — is fully formal with respect to
an efficiently implementable formal grammar. The language of Formal Abstracts should thus
be a controlled natural language (CNL) for mathematics. Even though the Formal Abstracts
project does not demand proofs of main theorems, Formal Abstracts have to be well-formed
with respect to the CNL grammar and well-posed mathematically. The latter may involve non-
trivial or even substantial proving: the simple well-definedness of the Euclidean norm v/a? + b2
on R?, e.g., involves checking that the term a? + b? is always non-negative, which requires a
proof from the axioms for ordered fields.

The Naproche (Natural Proof Checking) system [2] uses the mathematical CNL ForTheL
[5]. Before proving a ForTheL statement, the reasoner checks for its well-definedness in what is
called an ontological check which corresponds to type-checking. ForTheL as a natural language
employs a “soft” type system where types may have non-trivial definitions. So far, Naproche
translates soft types into first-order type guards which are dealt with by an external ATP like
E [6]. Although ontological checks are typically shallow in comparison to the proof of the
statement itself, the number of ontological checks often surpasses the number of logical checks.
This may lead to a high proof burden or even failure of overall checking.

A main motivation for our present work is to internally employ adequate and efficient type
mechanisms to model ForTheL’s soft types. This requires a redesign of Naproche’s logical
backend which transforms parse trees into formulae of the internal logic. We have made exper-
iments with the many-sorted logic TFF0 [7] together with automatic coercions for subtypes.
This covers, e.g., number systems with types for integers, rationals and reals, or set theories
with sets and classes where one has obvious direct embeddings between types.

Coercions are often implemented using type-classes and are inferred either implicitly (for
example in Coq [1]) or explicitly by a call to a function like coe (in Lean). Type-classes can
also be used for subtyping and are used to implement algebraic structures like groups or metric
spaces in Lean’s mathlib. This technique is very powerful, but requires a worst-case exponential
time algorithm.

In the case of direct embeddings (which form a transitive partial order) we can instead use
a data structure for transitive closures [4], which can infer a coercion in O(1) time when using
arrays. Because we expect the graph of coercions to be relatively sparse we use a binary tree
instead for storing the coercions. The asymptotic lookup time is then O(logn), where n is the
number of introduced types. This makes it feasible to check for coercions at every function
application. Furthermore, the total time consumed by insertions into the data structure is
bounded by O(nm), where n is the number of types and m the number of different coercions
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between two types. These coercions yield TFF0 formulae that can be processed directly by E or
Vampire without introducing type guards. We now have parsing and checking algorithms that
are cubic in the worst case and linear for several interesting formalizations. The ontological
checking of those formalizations is accelerated by orders of magnitude and provides informative
error messages in case of failure.

The new Naproche backend includes a variety of other enhancements like caching of proof
results and automatic translations to Lean. The backend also serves as basis for a future web
interface to Naproche.
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