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Solvers for Satisfiability Modulo Theories (SMT) are the driving force behind software ver-
ification, software testing, or software synthesis [1, 2, 3, 4]. These applications often require
repeated queries to an SMT solver. This means that the quick response time of the solver is
paramount.

An SMT solver receives as input a formula and responds if it is satisfiabile or not. In the
case of satisfiability, a satisfying interpretation (model) of the formula is also produced. Since
the problem is generally undecidable, solvers often time out or give up. Due to this hardness
of the problem, different heuristics may show very different per-instance behaviour in terms of
runtime and ability to find a successful solution in SMT solving. This can lead to the scenario
in which there is a single best solver on average, but an algorithm selecting the best solver for
a specific instance of a problem can yield a better result [5, 6]. This per-instance behaviour is
hard to understand for a human, but in accordance with the current trend [7, 8, 9], we aim to
predict the best solver using ML methods.

We develop an approach to solver selection in the domain of SMT using a Graph Neural
Network (GNN). In contrast to related methods, GNNs do not require manual feature design
as they enable discovering relevant features in the raw data. We compare several architectural
choices of GNNs which are trained to predict the performance of individual solvers in the chosen
benchmarks. Rather than choosing only one solver with the best prediction, we choose n best
solvers, order them by the predicted score, and delegate part of the time budget to each of
them. We compare our approach to a baseline, which uses bag-of-words as a representation of
each formula and gradient boosted trees as a predictor. In the selected benchmarks, we show an
improvement over this baseline in terms of the number of solved problems and overall solving
time.

GNNs are neural networks that process inputs structured as a graph. This makes them
different from other types of neural networks such as Multi-layer Perceptrons, Recurrent Neural
Networks, Convolutional Neural Networks, or Transformers, which do not assume any special
structure of the input. For this reason, GNNs became popular for processing all kinds of formal
structures such as logical expressions, which are naturally represented as trees or directed acyclic
graphs.

Most often, additional meta-information for nodes within an input graph is available. For
a specific node, this information is encoded as a feature vector of a fixed size. In our case, we
use the mapping from symbols corresponding to a given node to one-hot vectors.

Each layer of a GNN updates the feature vectors of all nodes by transforming and aggre-
gating the feature vectors of its neighbour nodes. After several steps of such feature vector
transformation, the final single vector is obtained by pooling, see also Figure 1.

The advantage of using a GNN is that the trained transformations are applied locally to
each node and the final aggregation operator does not require a specific number of inputs.
It allows the graphs to have different number of nodes and structure. Therefore, the trained
GNN is applicable to arbitrary graphs. GNN architectures differ in how they achieve the layer-
level node feature vector transformation and aggregation. In this contribution, we compare a
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(set-info :smt-lib-version 2.6)
(set-logic QF_NRA)
(set-info :category "crafted")
(set-info :status sat)
(declare-fun a () Real)
(assert (and (›= a 3) 
  (not (›= (* a 2) 3))))
(check-sat)
(exit)

Figure 1: The steps conducted during the creation of the input graph from a given SMT formula.

Figure 2: A cactus plot of one of our results on QF NRA benchmark. The y-axis represents
time and the x-axis the number of problems solved under the corresponding time. Virtual best
solver is denoted by vbs and represents the upper bound of what could be achieved.

simple Graph Convolutional Network (GCN) [10], Graph Attention Network (GAT) [11], Graph
Transformer [12] and Principal Neighbourhood Aggregation (PNA) [13].

We use GNNs for the regression task to predict different solvers runtimes for a specific
instance of a problem. Rather than choosing only one solver with the best prediction, we
choose n best solvers, order them by the predicted score, and delegate part of the time budget
to each of them.

We test our GNN on 4 representative benchmarks: QF NRA, UFNIA, UFNIA-CONF1 and
TPTP [14]. Figure 2 shows results for one of the considered families (non-linear arithmetic
without quantifiers).
To summarize, our work has the following main contributions:

• It applies GNN to rank a portfolio of SMT solvers on a given instance according to
suitability. To the best of our knowledge, this is the first time that GNN is applied in the
context of SMT.

• The proposed approach schedules n best solvers rather than just picking the best one,
which further improves the robustness of the approach.

• The experimental evaluation compares several GNN architectures. This will also be of
use to other researchers that wish to apply GNN in the context of SMT for other tasks.

1We have collected the different strategies that the solver CVC5 uses to solve UFNIA formulas in the
competition so we do not select the solver but the solving strategy.
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