
Towards Graph Neural Networks for SMT Portfolios

Jan Hůla1,2, David Mojž́ı̌sek1, and Mikoláš Janota2

1 University of Ostrava
{jan.hula21,mojzisek.work}@gmail.com
2 Czech Technical University in Prague

mikolas.janota@gmail.com

Solvers for Satisfiability Modulo Theories (SMT) are the driving force behind software ver-
ification, software testing, or software synthesis [1, 2, 3, 4]. These applications often require
repeated queries to an SMT solver. This means that the quick response time of the solver is
paramount.

An SMT solver receives as input a formula and responds if it is satisfiabile or not. In the
case of satisfiability, a satisfying interpretation (model) of the formula is also produced. Since
the problem is generally undecidable, solvers often time out or give up. Due to this hardness
of the problem, different heuristics may show very different per-instance behaviour in terms of
runtime and ability to find a successful solution in SMT solving. This can lead to the scenario
in which there is a single best solver on average, but an algorithm selecting the best solver for
a specific instance of a problem can yield a better result [5, 6]. This per-instance behaviour is
hard to understand for a human, but in accordance with the current trend [7, 8, 9], we aim to
predict the best solver using ML methods.

We develop an approach to solver selection in the domain of SMT using a Graph Neural
Network (GNN). In contrast to related methods, GNNs do not require manual feature design
as they enable discovering relevant features in the raw data. We compare several architectural
choices of GNNs which are trained to predict the performance of individual solvers in the chosen
benchmarks. Rather than choosing only one solver with the best prediction, we choose n best
solvers, order them by the predicted score, and delegate part of the time budget to each of
them. We compare our approach to a baseline, which uses bag-of-words as a representation of
each formula and gradient boosted trees as a predictor. In the selected benchmarks, we show an
improvement over this baseline in terms of the number of solved problems and overall solving
time.

GNNs are neural networks that process inputs structured as a graph. This makes them
different from other types of neural networks such as Multi-layer Perceptrons, Recurrent Neural
Networks, Convolutional Neural Networks, or Transformers, which do not assume any special
structure of the input. For this reason, GNNs became popular for processing all kinds of formal
structures such as logical expressions, which are naturally represented as trees or directed acyclic
graphs.

Most often, additional meta-information for nodes within an input graph is available. For
a specific node, this information is encoded as a feature vector of a fixed size. In our case, we
use the mapping from symbols corresponding to a given node to one-hot vectors.

Each layer of a GNN updates the feature vectors of all nodes by transforming and aggre-
gating the feature vectors of its neighbour nodes. After several steps of such feature vector
transformation, the final single vector is obtained by pooling, see also Figure 1.

The advantage of using a GNN is that the trained transformations are applied locally to
each node and the final aggregation operator does not require a specific number of inputs.
It allows the graphs to have different number of nodes and structure. Therefore, the trained
GNN is applicable to arbitrary graphs. GNN architectures differ in how they achieve the layer-
level node feature vector transformation and aggregation. In this contribution, we compare a

Towards Graphic Neural Networks for SMT J. Hůla et al.

AND

GEQ

NOT

VARIABLE

CONST_RATIONAL

GEQ

MULT

CONST_RATIONAL

AND

GEQ

NOT

VARIABLE

CONST_RATIONAL

GEQ

MULT

CONST_RATIONAL

(set-info :smt-lib-version 2.6)
(set-logic QF_NRA)
(set-info :category "crafted")
(set-info :status sat)
(declare-fun a () Real)
(assert (and (›= a 3)
 (not (›= (* a 2) 3))))
(check-sat)
(exit)

Figure 1: The steps conducted during the creation of the input graph from a given SMT formula.

Figure 2: A cactus plot of one of our results on QF NRA benchmark. The y-axis represents
time and the x-axis the number of problems solved under the corresponding time. Virtual best
solver is denoted by vbs and represents the upper bound of what could be achieved.

simple Graph Convolutional Network (GCN) [10], Graph Attention Network (GAT) [11], Graph
Transformer [12] and Principal Neighbourhood Aggregation (PNA) [13].

We use GNNs for the regression task to predict different solvers runtimes for a specific
instance of a problem. Rather than choosing only one solver with the best prediction, we
choose n best solvers, order them by the predicted score, and delegate part of the time budget
to each of them.

We test our GNN on 4 representative benchmarks: QF NRA, UFNIA, UFNIA-CONF1 and
TPTP [14]. Figure 2 shows results for one of the considered families (non-linear arithmetic
without quantifiers).
To summarize, our work has the following main contributions:

• It applies GNN to rank a portfolio of SMT solvers on a given instance according to
suitability. To the best of our knowledge, this is the first time that GNN is applied in the
context of SMT.

• The proposed approach schedules n best solvers rather than just picking the best one,
which further improves the robustness of the approach.

• The experimental evaluation compares several GNN architectures. This will also be of
use to other researchers that wish to apply GNN in the context of SMT for other tasks.

1We have collected the different strategies that the solver CVC5 uses to solve UFNIA formulas in the
competition so we do not select the solver but the solving strategy.

2

Towards Graphic Neural Networks for SMT J. Hůla et al.

Acknowledgment

This scientific article is part of the RICAIP project that has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 857306.
The results were supported by the Ministry of Education, Youth and Sports within the dedicated
program ERC CZ under the project POSTMAN no. LL1902.

References

[1] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability modulo
theories. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pages 825–885.
IOS Press, 2009.

[2] Andrew Reynolds, Viktor Kuncak, Cesare Tinelli, Clark W. Barrett, and Morgan Deters.
Refutation-based synthesis in SMT. Formal Methods Syst. Des., 55(2):73–102, 2019.

[3] Leonardo de Moura and Nikolaj Bjørner. Applications and challenges in satisfiability modulo
theories. In Workshop on Invariant Generation (WING), volume 1, pages 1–11. EasyChair, 2012.

[4] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. SAGE: whitebox fuzzing for security
testing. Commun. ACM, 55(3):40–44, 2012.

[5] Kevin Leyton-Brown, Eugene Nudelman, Galen Andrew, Jim McFadden, and Yoav Shoham. A
portfolio approach to algorithm selection. In IJCAI, volume 3, pages 1542–1543, 2003.

[6] Serdar Kadioglu, Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann.
Algorithm selection and scheduling. In International Conference on Principles and Practice of
Constraint Programming, pages 454–469. Springer, 2011.

[7] Joseph Scott, Aina Niemetz, Mathias Preiner, Saeed Nejati, and Vijay Ganesh. MachSMT: a ma-
chine learning-based algorithm selector for SMT solvers. Tools and Algorithms for the Construction
and Analysis of Systems, 12652:303, 2020.

[8] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L
Dill. Learning a sat solver from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018.

[9] Chris Cameron, Rex Chen, Jason Hartford, and Kevin Leyton-Brown. Predicting propositional
satisfiability via end-to-end learning. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 3324–3331, 2020.

[10] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

[11] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[12] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

[13] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. arXiv preprint arXiv:2004.05718, 2020.

[14] Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure. From CNF to TH0,
TPTP v6.4.0. Journal of Automated Reasoning, 59(4):483–502, 2017.

3

