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A subset S of an algebra A generates A if the smallest subalgebra 〈S〉 of A that contains S is
all of A. A generating subset of A of smallest possible cardinality is called a minimal generating
set. In other words, calculating the closure of S, i.e., applying exhaustively the multiplication
operation of A, S generates all the elements of A. The rank of an algebra is the cardinality of
its minimal generating set.

Finding small and minimal generating sets is of importance in algebra, both theoretically
and for the purposes of computations. For instance, a vector space is completely characterized
by it rank (that is, dimension) and the underlying field. Groups with a single generator are
very easy to understand while groups with two generators can be in some sense arbitrarily
complicated. Alternative algebras with two generators are associative and hence relatively easy
to understand compared to general alternative algebras. In computational group theory, the
efficiency of algorithms often depends heavily on the number of generators given.

We present a method for calculating minimal generating sets in magmas (sets with a single
binary operation) by means of SAT solvers and integer linear programs. This method cannot
compete with specialized algorithms in highly structured magmas, such as groups, but it appears
to be efficient in the general case. We focus on loops, that is, magmas M with identity element
in which all translations y 7→ yx and y 7→ xy are bijections.

The main idea is as follows: Let M be a finite magma of size n and let S be any nonempty
subset of M . If 〈S〉 = M then S is a generating set. Otherwise 〈S〉 < M and every generating
set of M must contain an element from the complement M \ 〈S〉. (Indeed, if A is a generating
set of M such that A ∩ (M \ 〈S〉) = ∅ then A ⊆ 〈S〉 and 〈A〉 ≤ 〈S〉 < M , a contradiction.)

Every subset S ⊆M with 〈S〉 < M therefore yields a restriction t(S) on every generating set
of M , in particular on every minimal generating set of M . This restriction can be expressed as
a condition suitable for SAT solvers, namely t(S) =

∨
x∈M\〈S〉 x, and can be readily translated

into a constraint of an integer linear program (see below).
Given a collection {Si : i ∈ I} of subsets of M , any generating set must satisfy the con-

junction t(I) =
∧

i∈I t(Si). Finding a candidate for a minimal generating set is equivalent to
solving the corresponding minimal hitting set problem (which is in general NP-complete).

To prove that M has rank larger than k, it suffices to find a collection {Si : i ∈ I} of subsets
of M for which the following integer linear program is infeasible (unsatisfiable).

x ∈ {0, 1} for every x ∈M, (1)∑
x∈M−〈Si〉

x ≥ 1 for every i ∈ I, (2)

∑
x∈M

x ≤ k. (3)
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If the above formulation becomes unsatisfiable, k must be increased. If the formulation is
satisfiable, we obtain a set of elements that represent a candidate S = {x ∈M : x = 1} for the
generator. If 〈S〉 = M , we are done because the candidate is an actual generator; because k was
increased only when needed, it is also guaranteed that this generator is minimal. Otherwise,
if 〈S〉 < M , we add S to our collection of subsets of M . Effectively, this means adding the
restriction

∑
x∈Mr〈S〉 x ≥ 1 to Equation 1.

This approach can be seen as an instantiation of the framework proposed by Saikko et al. [4],
which shows that a class of problems can be tackled by iterative generation of the minimal
hitting set problem. We remark that the problem can be directly encoded as a single SAT
problem; this formulation is cubic, which has proven prohibitive. Applying SAT technology
on the minimal hitting set instances obtained from this process (Equation 1) exhibited poor
results. The integer linear programming solver gurobi [2] proved to be far more adequate.

We ran experiments on groups and on Moufang loops. Moufang loops are loops satisfying
the identity x(y(xz)) = ((xy)x)z and are closely related to the alternative algebras mentioned
above.

GAP [1] contains extensive libraries of groups. There exist very efficient algorithm for r(G)
if G is a solvable group. We calculated r(G) for all nonsolvable groups of order less than 2048.
In all cases, we verified the rank r(G) as posted in GAP. (In some instances the generating set of
G stored in GAP is larger than r(G) but then our r(G) can be verified heuristically by methods
of GAP.)

The package LOOPS [3] of GAP contains all nonassociative Moufang loops of order n ≤ 64
and of orders n = 81 and n = 243. For instance, there are 4262 such loops of order 64 and
5 of order 81. No efficient methods for calculating the rank of Moufang loops are known. We
calculated r(M) for all Moufang loops M of the form M = A×G, where A is a Moufang loop
from the library of LOOPS and G is the cyclic group of order 8. Here, r(A) > 2 due to Moufang
theorem and r(G) = 1. In future experiments we want to include products with all groups of
order 8 (there are 5 of them).

All the instances were solved with the average time of 1.75 s. The calculated r remains small
for the considered instances, typically 3, 4, 5. Interestingly, the largest considered loops of order
1944 = 243 × 8 have all rank 3; only several loops of order 512 = 256 × 8 have the maximal
rank found 6. The number of iterations needed, i.e., size of Equation 1, is also typically small,
in the range of hundreds.

The following remarks are specific to generating sets in (Moufang) loops and groups and
play a role in the search.

• If S ≤ M and M is a finite Moufang loop then |S| divides |M |. (This is false in general
loops.)

• If S ≤ M and x, y ∈ M then the cosets xS, yS might interest nontrivially (that is,
xS ∩ yS 6= ∅ and xS 6= yS) but the cosets xS, S either coincide or are disjoint.

• If S < M then |S| ≤ |M |/2. Consequently, |M \ S| ≥ n/2 and the number of variables
in every term t(S) is large, resulting in a difficult hitting set problem that SAT solvers
struggle with.

• The rank r(M) of M is at most blog2(|M |)c.

• If A, B are finite loops then r(A×B) ≤ r(A) + r(B). It is not well understood when the
equality holds.
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