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Introduction World models represent the basic mechanisms of a system and can provide
predictions about how transformations (actions) affect the state of the system. Such models
have recently gained attention in Reinforcement Learning (RL) and in several domains model
based learning systems performed similarly or better than highly tuned model free variants |1,
8, 12]. World models can increase sample efficiency since trajectories can be generated without
interacting with the environment, and they can aid exploration by yielding a semantically
meaningful latent structure that allows for identifying promising directions.

Our project raises the question whether such world models are achievable for theorem prov-
ing, i.e. whether state-of-the-art machine learning toolset is capable of capturing the underlying
dynamics of an Automated Theorem Proving (ATP) system. A world model for an ATP system
should know what moves are valid and when the proof search failed or succeeded.

An ATP system can often be framed as an RL environment: In each state of the prover, it
has to select from a set of valid inferences (actions) that result in a new state, and a proving
agent aims to select inferences that maximise its chance of finishing the proof. We select the
leanCoP [6] connection tableau calculus for which we try to build a world model. leanCoP has
a clean and compact notion of a state to which a limited number of inferences (actions) can be
applied, making it a comfortable RL environment. Our two primary questions are: 1) what is
length barrier within which the model can generate valid inference sequences and 2) to what
extent the model can predict if an inference leads us closer to the end of the proof.

Most related to our work is [4], which train a latent embedding model, a state transition
model in latent space, and a model that predicts the applicability of rewrite steps solely from the
latent embedding. The trained models can predict rewrite step validity significantly better than
simple baselines even after 10 rewrites in latent space. However, evaluation is only performed on
valid rewrites, so we do not know how far the model can chain its own predictions. Furthermore,
little is known about how much the state changes during the rewrites, while the inferences in
leanCoP have a clear sense of directionality (there is no returning to the same state).

We turn leanCoP into an RL environment, as done in [2, 11, 10] and adapt the DreamerV2 [1]
model-based RL algorithm which shows impressive results in modeling ATARI video games.

Dreamer Architecture The Dreamer system uses several neural network components to
map observed states into a latent representation and then to perform actions in latent space.
Given state space S and action space A, we train an encoder model E : S — R™ which creates a
latent vector. We also train a decoder D : R™ — S which reconstructs the state from latent code.
A reward prediction model R : R™ — R estimates the reward from latent code associated with
the given state. Finally, a transition model T : (R™, A, X) — (R™, X) predicts the effect of an
action on the latent code. T' is implemented as a recurrent state-space model (RSSM), equipped
with its own internal state x € X, that is updated after each transition. All components are
trained jointly, on sequences of (s;, a;,7;, $;11) state, action, reward, successor tuples, using the
following three objectives: 1) reconstruction of the state D(E(s;)) = s;, 2) reconstruction of
the reward R(E(s;)) = r; and reconstruction of the successor state T(E(s;), ai, ;) = E(Sit1)-
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Once the system is trained, Dreamer is capable of generating action and latent code sequences
in its “head” without interacting with the real environment, hence the motivation for its name.

Dreamer for leanCoP: State Representation [4] only use training signal coming from
reward reconstruction (predicting if a rewrite is valid), while [1] show that most of the repre-
sentational power of Dreamer comes from state reconstruction. However, in the case of theorem
proving, reconstructing the state is not as straightforward as for ATARI games, as the former
has discrete proof objects, which requires some hand-crafted mapping before processing by neu-
ral models. We consider three methods for extracting features from leanCoP states: 1) manual
features developed in [3] and successfully used in many systems, e.x. [2, 11], referred to as
ENIGMA features and 2) using the graph neural network developed in [5] specifically for logic
formulae, referred to as GNN and 3) transformer language models that process text directly.
ENIGMA features rely on consistent naming of concepts, while the GNN exploits structural
similarities of terms, so they are somewhat complimentary. Transformers are recently gaining
attention in theorem proving (e.g. [9, 7]). Hence, both the input of the encoder E and the
output of decoder D can be either ENIGMA features, a graph or plain text. We intend to
experiment with all combinations to see what results in the best latent space structure.

Dreamer for leanCoP: Action Selection Dreamer assumes either a fixed size discrete
action space or a real m-dimensional space, neither of which matches the action space of a
theorem prover, since the valid actions are state dependent. However, in leanCoP, the set of
literals contained in the input clauses constitute a fixed size superset of valid actions, so we can
let our model select from this superset. All actions are encoded using either ENIGMA features,
graph embedding or plain text and we train an action encoder A, : A — R". The transition
model concatenates latent state and action codes before predicting the successor state.

Our current implementation uses the same graph network for states and actions, which
contains nodes for each clause derived either from the tableau or from the actions. In the
case of state embedding, we collapse every clause while in the case of the action embedding we
extract only the relevant part of the graph for each action.

Note that different axioms yield different possible actions, hence the action space can vary
across problems. For this reason, our current architecture does not support model building
for heterogeneous problem corpora; it is instead suitable for modeling problems within a single
theory. We argue that this is the setup in which a world model makes most sense.

Dreamer for leanCoP: Sample Selection Dreamer maintains a buffer of previously ex-
plored episodes (proof attempts) which it samples from in each training step. In order to make
the length of samples uniform, each sample is a fixed length slice of an episode. However, the
length of proof attempts can vary greatly across problems, so we introduce a length balancing
mechanism. We maintain a set of buckets by ... b; where b; holds slices of length [ in the range
2971 < | < 2/, During replay, we generate 2"/ ~7 samples from bucket b; where 277 is the
batch size. This ensures that samples from episodes of different length contribute equally. To
make the sampled data more balanced, 20% of the samples are chosen with a positive reward
sum to compensate for the fact that most proof attempts fail and yield no positive reward.

Dreamer for leanCoP: Rewards and Losses Assigning rewards to theorem prover actions
is a well known challenge. A specialty of latent space reasoning is that we do not know what
inferences are valid in a particular state, so the model has to learn that as well. To aid this, we
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give high negative reward for invalid moves. Our reward function R for action a performed in
state s is:

1 if a proof was found
R(s, a) —-0.2 if there are no more valid moves
S? a = . . . .
-1 if a is an invalid move

—-0.5 if a step limit is reached

During training, we have the convenience that we know which actions are valid. We exploit
this by adding an extra loss term to the world model, which is the negative log probability of
choosing a valid step. This helps to make convergence faster.

Current Status We created an RL environment that encapsulates leanCoP and adapted the
Dreamer codebase to the particularities of the environment. We implemented ENIGMA feature
extraction as well as the graph model, but we have not started working on the transformer model
yet.

We are running first experiments, tuning hyperparameters and evaluating the consistency
of the latent representation. We find that the model struggles with the sparsity of the rewards,
even when training slices are balanced. While the model quickly finds ways to avoid illegal
moves and failure states by infinite derivations, it cannot yet make good use of the positive
signal coming from successful proof attempts.

Conclusion Our project explores the possibility of building a world model for an automated
theorem prover that captures its internal dynamics. We adapted the DreamerV2 architecture
to the leanCoP connection tableau calculus and started running first experiments. The promise
of such world models is to yield a semantically meaningful latent structure, in which one can
identify promising directions, leading to better exploration and more targeted proof search.
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