Latent Action Space for Efficient Planning in
Theorem Proving

Minchao Wu*, Yuhuai VVutk

August 24, 2021
Abstract

One of the most critical challenges in applying machine learning tech-
niques to automated reasoning is the need to work with an enormous
action space. Not only does it make the exploration difficult, but also it is
very time-consuming to generate at inference time. In this work, we intro-
duce latent action space with a world model to speed up the efficiency of
action generation, with the potential of alleviating the exploration prob-
lem, as well as improving sample efficiency using the world model.

1 Introduction

One of the major challenges in theorem proving [14] 2] [7, 12} 10 111 [6] is the
need to deal with an enormous action space. In the most general setting, the
action space for a theorem proving agent consists of a sequence of strings, repre-
senting a tactic application along with theorem parameters, or an intermediate
proposition, or a new definition, lemma, theorem statements. This approach
also has been adopted in recent works using transformer-based models [12] [@],
because of its generality (e.g., the capability of generating new terms). However,
due to the nature of autoregressive generation for such actions, even doing one
action generation requires a quiet amount of time, not to mention if one wants
to search multiple steps ahead.

In this work, we propose to learn such a high-level representation, by em-
bedding the raw action space into a latent action space.

2 Method

In order to embed the action into a continuous latent space, we first introduce
an action encoder and an action decoder.

e Encodergtion: action space — latent action space : a ~ g(ala).

e Decodery tion: latent action space — action space : a ~ p(ala).

We can train the action encoder and decoder using the reconstruction ob-
jective:
Lree = D(p(a)llp(ala)), (1)

where p(a) =)", p(ala)g(ala) and D is a metric on the distribution of actions.
The most natural choice is the KL divergence (cross entropy loss) between the
original action distribution (label) and the decoded action distribution.

*Equal contribution. MW is at the Australian National University and YW is at the
University of Toronto. Correspondence to Minchao.Wu@anu.edu.au and ywu@cs.toronto.edu.

However, we cannot directly work with latent action space, because the
environment only accepts the raw action space as input. Therefore, an “envi-
ronment” in the latent space is necessary for this purpose. This then naturally
leads us into the model-based RL techniques [13, [3] 4 & [5].

We hence introduce the following components. Firstly, we introduce a state
encoder, that encodes the proof state x; into a latent state space Z represented
by a continuous vector, as well as its counterpart, a state decoder — that decodes
the latent state back to the proof state.

e State encoder: z; ~ q(2¢|zt—1, ¢, Tt)
o State decoder: Ty ~ p(&¢|2t)

Next, given the latent state space, we introduce the latent transition opera-
tor. The transition operator will sample the next latent state given the latent
state and action at the current time step. Namely, we use a neural network
model to learn the internal dynamics of the theorem proving engine, performing
the deduction step of theorem proving.

e Latent transition operator: 2; ~ p(2|z¢—1, ¢—1)

To train the state encoder and decoder, we also use a reconstruction objective
as the case of latent actions. To train the transition operator, we use a forward
prediction loss — the cross-entropy loss between the ground truth latent state
and the predicted latent state. Furthermore, to add more semantic groundings
for the latent action space, we also use the forward prediction loss to train the
action and state encoder. To summarize, the total loss objective is written
below:

L= Lrec(a) + Erec(x) + Lfo7“ward~

Given a latent transition operator, one can perform efficient planning in
the latent space — looking ahead by unrolling the state dynamics for a number
of steps. Unlike generating a full sequence of tokens at each step, the latent
action allows a one-shot generation, immensely shortening the planning time.
There are many possibilities in terms of integrating the transition operator with
various kinds of search algorithms, such as best-first search, MCTS, etc. — a
vast space for exploration.

3 Experiments

We start by learning the state and action encoding, as well as the dynamics
of the INequality Theorem proving benchmark (INT) [I5]. We generate 40000
proof trajectories using INT using a cardinality of an axiom combination K = 3
and a length of a proof L = 7. The data set then contains 149009 distinct
transitions which are split into training and test data sets with a 80:20 ratio.
We use a character-level transformer to learn the latent representations of
both state and action, and use an MLP to learn the internal dynamics (i.e. the
transition operator) of INT. The transformer uses 256 embedding dimensions,

Table 1: Performance on the test set. BLEUec—action (1€SP. BLEUrec—state)
denotes the BLEU score of the reconstructed actions. BLEU.q,s denotes the
BLEU score of the predicted states by applying the transition operator once.
QED accuracy is the percentage of correctly predicted QEDs by applying the
transition operator once.

Methods BLEU,cc—action BLEUpec—state BLUEgans QED accuracy (%)

Lck 96.98 94.12 88.23 94.20
Lyse 73.87 69.38 60.18 0

8 attention heads and 1024 hidden dimensions for position-wise feed-forward
layers. We also use dropout with rate 0.1, label smoothing with coefficient 0.1,
and a maximum 128 tokens for both training and evaluation examples. The
MLP is a residual block with two hidden layers of dimensions 1024 and 512. We
use the Adam optimizer [9] for training.

We experiment with two different forward losses for training the transition
operator. Lo denotes the cross-entropy loss between the ground truth target
state and the decoded predicted latent state. L£y;sr denotes the mean squared
error between the encoded ground truth of target state and the predicted latent
state. We implement our algorithms in JAX [I] and run both experiments for
100k training steps using a single NVIDIA Tesla V100 GPU and 8 cores of an
Intel(R) Xeon(R) CPU @ 2.20GHz.

shows the quality of the transition prediction and the reconstruction
of states and actions when evaluated on the test set. When calculating the
BLEU scores for transition predictions, we separate out those whose references
are a single “QED” token (which indicates the end of the proof) to make sure
that BLEU scores reflect the quality of prediction properlyﬂ We add an addi-
tional metric called QED accuracy which is the percentage of exact matches of
the QED token. shows the quality of transition prediction when the
state dynamics is unrolled for a number of steps using the learned transition
operator. It can be seen that the transition operator trained using Lo g outper-
forms the one trained using L;sg by a large margin, and that the latter lacks
the ability to correctly predict QEDs.

4 Discussion

There has been an early investigation on latent space for mathematical reason-
ing [I0], which shows promising results of neural networks for predicting the
latent state several steps ahead, in the HOList system with an ad-hoc action

IFor example, if we have references: [“QED”,“QED”,“QED”,“QED”] with predictions:
[“to ((((b* a) + (a*b))*(ax*(a+Db))*(*x1) = (e +0b) *a)*(a+ b)) * (cx*
1))”,“QED”,“QED”,“QED”]), the BLEU score of this corpus is only 0.79, which does not
reflect the quality of prediction properly.

100 # 5 100

Lok
90 +
Lyse | |80
80 | &
®
D 70 | \\'\’_\. . 60 5
€3] 3]
= g
m 60 | +40 A
50 %’
F2
R 0
—a— L5k
30 0
1 2 3 4 5 6 7

steps

Figure 1: Quality of transition operator with respect to the number of steps
unrolled. Given a state s, we look ahead n steps by recursively applying the
transition operator to s and the subsequent ground truth actions corresponding
to s. The further we unroll, the more difficult it becomes for the transition
operator to correctly predict the target states. Note the different scale on right
for QED accuracy. Step 7 has a QED accuracy instead of a BLEU score because
all target states at step 7 are QEDs.

space. Greatly inspired by it, we propose to build a full-fledged latent space
system for the most general action space, to improve mathematical reasoning
in planning efficiency. In the meantime, the world model potentially can speed
up the interaction time with the environment, and also improve the sample ef-
ficiency. Furthermore, we believe if the latent space is semantically grounded,
exploration in the latent action space can also provide big gains over explor-
ing with a sequence of long tokens. We hope our work provides a meaningful
direction to future machine learning models for theorem proving.

References

[1] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake Van-
derPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable trans-
formations of Python+NumPy programs, 2018.

[2] James P. Bridge, Sean B. Holden, and Lawrence C. Paulson. Machine
learning for first-order theorem proving - learning to select a good heuristic.
J. Autom. Reason., 53(2):141-172, 2014.

[3] David Ha and Jiirgen Schmidhuber. World models. CoRR, abs/1803.10122,
2018.

[4]

[11]

[12]

[13]

Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi.
Dream to control: Learning behaviors by latent imagination. In 8th In-
ternational Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba.
Mastering atari with discrete world models. CoRR, abs/2010.02193, 2020.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W. Ayers, and Stanis-
las Polu. Proof artifact co-training for theorem proving with language mod-
els. CoRR, abs/2102.06203, 2021.

Geoffrey Irving, Christian Szegedy, Alexander A. Alemi, Niklas Eén,
Frangois Chollet, and Josef Urban. Deepmath - deep sequence models
for premise selection. In Daniel D. Lee, Masashi Sugiyama, Ulrike von
Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 29: Annual Conference on Neural Infor-
mation Processing Systems 2016, December 5-10, 2016, Barcelona, Spain,
pages 2235-2243, 2016.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski,
Roy H. Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Pi-
otr Kozakowski, Sergey Levine, Afroz Mohiuddin, Ryan Sepassi, George
Tucker, and Henryk Michalewski. Model based reinforcement learning for
atari. In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Dennis Lee, Christian Szegedy, Markus N. Rabe, Sarah M. Loos, and
Kshitij Bansal. Mathematical reasoning in latent space. In 8th Interna-
tional Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence Paulson. Isarstep: a bench-
mark for high-level mathematical reasoning. 2021.

Stanislas Polu and Ilya Sutskever. Generative language modeling for auto-
mated theorem proving. CoRR, abs/2009.03393, 2020.

Richard S. Sutton. Integrated architectures for learning, planning, and re-
acting based on approximating dynamic programming. In Bruce W. Porter
and Raymond J. Mooney, editors, Machine Learning, Proceedings of the
Seventh International Conference on Machine Learning, Austin, Texas,
USA, June 21-23, 1990, pages 216—224. Morgan Kaufmann, 1990.

[14] Josef Urban, Jir{ Vyskocil, and Petr Stepanek. Malecop machine learning
connection prover. In Kai Briinnler and George Metcalfe, editors, Auto-
mated Reasoning with Analytic Tableaux and Related Methods - 20th Inter-
national Conference, TABLEAUX 2011, Bern, Switzerland, July 4-8, 2011.
Proceedings, volume 6793 of Lecture Notes in Computer Science, pages 263—
277. Springer, 2011.

[15] Yuhuai Wu, Albert Jiang, Jimmy Ba, and Roger B. Grosse. INT: an
inequality benchmark for evaluating generalization in theorem proving.
CoRR, abs/2007.02924, 2020.

	Introduction
	Method
	Experiments
	Discussion

