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Introduction

Premise selection [6] is a classic problem in automated theorem proving (ATP) which asks
how to select the most relevant lemmas useful for proving a given theorem. As such, it is
firmly situated in the domain of formal mathematics and has long been a target for machine
learning methods in ATP [9, 3, 4, 5, 10, 1]. In this work, we consider informal premise selection,
where the statements of premises and theorems are in natural language and labels are given
by references to premises in ground truth informal proofs. The NaturalProofs dataset, recently
introduced in [12], frames informal premise selection as an information retrieval task.

We explore the applications of pretrained generative language models finetuned on a CLIP-
style [8] contrastive objective for retrieval over informal mathematics corpora. We show that
WebMath pretraining [7] leads to significant performance gain compared to pretraining only on
the same data as GPT-3 [2]. We achieve a new state-of-the-art on the NaturalProofs dataset [12],
improving on the previous state-of-the-art by up to 80% while using causal rather than bidi-
rectional transformers and fewer parameters overall.

Methodology

We use decoder-only transformers similar to GPT-3 [2] with nlayers = 12, dmodel = 768,
nhead = 12, and dhead = 64, totalling to 125M trainable parameters. After pre-training on
the autoregressive language modelling task, we adapt our models for embedding-based retrieval
as follows. Given a query/document x, we compute an embedding x̂ ∈ Rdmodel for x by taking
x̂ to be the activations for the end-of-text (EOT) token. We finetune our models using an In-
foNCE loss [11] exactly analogous to the objective used by CLIP [8]. That is, given a batch of N
positive (query, document) pairs, we train the encoder to maximize the cosine similarity of the
N positive examples while minimizing the cosine similarity of the N2 −N negative examples.
At test time, we retrieve documents for a given query by maximizing the cosine similarity of
their embeddings. We test our methodology on the NaturalProofs dataset [12], which comprises
(theorem, premise) pairs extracted from proofs of theorems on ProofWiki. We use the same
theorem-wise train/test split in this work.

Unlike CLIP [8] or the BERT-based model studied in NaturalProofs [12], we use the same
encoder to embed both queries (theorems) and documents (premises). Since “X is useful to
prove Y ” is an asymmetric relation and we use a CLIP-style symmetric cross-entropy loss, the
encoder must be allowed to distinguish between theorems and references. We do this by simply
formatting the inputs to the transformer as

Theorem title: <title> <newline> Theorem statement: <statement>

Reference title: <title> <newline> Reference statement: <statement>.
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During contrastive finetuning, we sample batches of N = 2048 pairs by first sampling N
theorems from the NaturalProofs train split, and then further sampling a positive reference
from the proof of each theorem in the batch. All our models are trained for approximately 7000
steps with the Adam optimizer, using 32 V100 GPUs.
We study three pretraining regimes for the NaturalProofs informal premise selection task:

• No pretraining. The model is randomly initialized and only learns theorem/premise
representations through contrastive training.

• GPT-3 style pretraining. The model is pretrained for 300B tokens on the same data
(a mix of filtered CommonCrawl, WebText, books, and Wikipedia) as GPT-3 [2].

• WebMath pretraining. Starting from the final snapshot of the previous model, we
train for another 72B tokens on the WebMath dataset [7], comprising a mix of math
arXiv, Python, Math StackExchange, Math Overflow, and PlanetMath.

We refer to our methodology for informal premise selection as contrastive theorem-premise
training (CTPT) and denote the three models above by ctpt-no-pretrain, ctpt-webtext,
and ctpt-webmath.

Results and discussion

recall@10 recall@100 avgp@100 full@100 full@1K

BERT 20.27 59.44 14.01 27.39 70.52
ctpt-no-pretrain 23.76 54.01 11.91 23.75 56.32

ctpt-webtext 34.39 65.45 17.97 34.76 64.51
ctpt-webmath 36.92 70.39 21.53 39.49 73.52

Table 1: Our models’ performance on the NaturalProofs test set alongside results from [12].

Our main results are displayed in Table 1. The model ctpt-webmath outperforms the
previous state-of-the-art on all metrics. Our models also utilize 43% fewer parameters since the
BERT-based model embeds theorems and references with separate copies of bert-base-cased
(110M params). It is possible that the webtext data contains ProofWiki, but WebMath does
not and we consider the significant performance gap between ctpt-webtext and ctpt-webmath

to be of primary interest. We speculate that the models studied in [12] are severely undertrained
due to using only 200 randomly sampled negatives for each positive example.

Future directions The results discussed in this extended abstract are preliminary, albeit
promising. We plan to ablate the effect of including various components of the pretraining
(e.g. Python vs informal math in WebMath, the necessity of webtext), as well as the zero-
shot performance of our models (i.e. no contrastive finetuning) and potential methods for
unsupervised retrieval. We consider the applications of our methodology to premise selection
in the formal setting (e.g. inside an ITP or ATP) to also be a promising future direction.
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