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Abstract

We develop Stratified Shortest Solution Imitation Learning (3SIL) to learn equational
theorem proving in a deep reinforcement learning (RL) setting. The self-trained mod-
els achieve state-of-the-art performance in proving problems generated by one of the top
open conjectures in quasigroup theory, the Abelian Inner Mapping (AIM) Conjecture. To
develop the methods, we first use two simpler arithmetic rewriting tasks that share tree-
structured proof states and sparse rewards with the AIM problems. On these tasks, 3SIL
is shown to significantly outperform several established RL and imitation learning meth-
ods. The final system is then evaluated in a standalone and cooperative mode on the
AIM problems. The standalone 3SIL-trained system proves in 60 seconds more theorems
(70.2%) than the complex, hand-engineered Waldmeister system (65.5%). In the cooper-
ative mode, the final system is combined with the Prover9 system, proving in 2 seconds
what standalone Prover9 proves in 60 seconds.

Automated theorem proving has been applied in the theory surrounding the Abelian Inner
Mapping Conjecture, known as the AIM Conjecture [3]. This is one of the top open conjectures
in quasigroup theory. Work on the conjecture has been going on for more than a decade.
Automated theorem provers use hundreds of thousands of inference steps when run on problems
from this theory. In this work, we train a machine learning model to guide proof decisions.

We use a dataset of theorems generated by this conjecture as a testbed for our machine
learning methods [1]. The dataset comes with a simple prover called AIMLEAP that can
take machine learning advice.1 We use this system as a reinforcement learning environment.
AIMLEAP keeps the state and carries out the cursor movements and tree rewrites.

The AIM conjecture concerns specific structures in loop theory [3]. A loop is a quasigroup
with an identity element. A quasigroup is a generalization of a group that does not preserve
associativity. Currently, work in this area is done using automated theorem provers such as
Prover9 [4, 3]. The Prover9 theorem prover is especially suited to this approach because of its
well-established hints mechanism [7]. The dataset is derived from this Prover9 approach and
contains around 3500 theorems that can be proven with the definitions and lemmas [1].

There are 177 possible actions in the environment. Three actions are cursor movements,
where the cursor can be moved to an argument of the current position. The other actions all
rewrite the current term at the cursor position with various axioms, definitions and lemmas
that hold in the AIM context.

To develop a method that can solve equational theorem proving problems, we considered two
simpler arithmetic tasks, which also have a tree-structured input and a sparse reward structure:
Robinson arithmetic and polynomial arithmetic. In both cases, the task is to normalize a
mathematical expression to one specific form. The learning environments incorporate two
existing datasets. For the Robinson arithmetic normalization task, we use a dataset that was
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Figure 1: Comparison of methods on the Robinson arithmetic task. Y-axis denotes progress on
a task curriculum, X-axis denotes the amount of training epochs.
constructed for reinforcement learning experiments in the interactive theorem prover HOL4 [2].
For the polynomial normalization task, we employ a dataset introduced for experiments in
symbolic rewriting using recurrent language models [5].

Robinson arithmetic is a simple arithmetic theory. In the task, we are asking the agent
to calculate the value of the expression. As an example, S(S(0)) + S(0), representing 2 + 1,
needs to be rewritten to S(S(S(0))). The setup for this RA normalization task is modeled
after [2]. Based on the arithmetic tasks, we developed a method, called stratified shortest
solution imitation learning (3SIL), which performed better than the baseline algorithms. In
Figure 1, we show the relative performance of several methods on the Robinson arithmetic task.
We compare standard reinforcement learning algorithms, such as PPO [6] and ACER [8] and
behavioral cloning (BC), with our method 3SIL. On these tasks, our method outperforms the
RL baselines, as shown in Figure 1. Both variants of our method advance more quickly through
the curriculum than the baseline algorithms.

The method was then tested on the more difficult AIM theorem proving task. In Table 1,
we show the performance of a model trained on the AIMLEAP task within the AIMLEAP
environment. We compare with state-of-the-art theorem provers and observe that the model
can outperform Waldmeister. In further experiments, we also observe that assisting Prover9
with the learned model can improve its performance. We let the model rewrite the starting

Table 1: Theorem proving performance on
the hold-out test set in fraction of problems
solved. Means and standard deviations are
the results of evaluations of 3 different models
from 3 different training runs.

Method Success Rate
E (60s) 0.802
Waldmeister (60s) 0.655
Prover9 (60s) 0.833
Model (1x) 0.586 ± 0.029
Model (60s) 0.702 ± 0.015

Table 2: Prover 9 theorem proving perfor-
mance on the hold-out test set when inject-
ing lemmas suggested by the learned model.
Prover9 ’s performance increases when using
the model’s suggested lemmas.

Method Success Rate
Prover9 (1s) 0.715
Prover9 (2s) 0.746
Prover9 (1s) + Model (1s) 0.841 ± 0.019

state and add the rewritten states as lemmas to the Prover9 input. In this cooperative mode,
the final system is combined with the Prover9 system, proving in 2 seconds what standalone
Prover9 proves in 60 seconds. The results are shown in Table 2. This setup also outperforms E
(shown in Table 1). In conclusion, we show that equational theorem proving in loop theory can
be assisted by learned neural network models. In the future, we will explore whether we can
automatically select the best previous proofs to learn from to accelerate the learning process.
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