
LISA: Language models of ISAbelle proofs
Albert Qiaochu Jiang
University of Oxford

albert594250@gmail.com

Wenda Li
University of Cambridge

wl302@cam.ac.uk

Jesse Michael Han
OpenAI

jessemichaelhan@gmail.com

Yuhuai Wu
University of Toronto
ywu@cs.toronto.edu

ABSTRACT
We introduce an environment that allows interaction with an Is-
abelle server in an incremental manner. With this environment,
we mined the Isabelle standard library and the Archive of Formal
Proofs (AFP) and extracted 183K lemmas and theorems. We built
languagemodels on this large corpus and showed their effectiveness
in proving AFP theorems.

1 INTRODUCTION
There has been a surge of interests recently in applying machine
learning models for theorem provers. Examples include [3, 6–8, 12,
14], all of which demonstrate great promises of machine learning
models in proving new theorems. In this work, we propose to mine
the libraries used by the Interactive Theorem Prover (ITP) Isabelle,
namely, the Isabelle standard library and the Archive of Formal
Proofs. The libraries have been mined previously for proof method
recommendations based on hand-crafted features [9, 10].

Contributions

• We built an environment where agents can interact with the
Isabelle theorem prover in an incremental manner. This enables
learning-based agents to conjecture in the Isar language.

• Wemined the Archive of Formal Proofs and the standard library
of Isabelle. We extracted 183K theorems and 2.16M proof steps.
This is one of the largest proof corpora for interactive theorem
provers.

• We trained large language models on this corpus and obtained
the first results of using such models to prove theorems in this
new dataset.

2 ENVIRONMENT AND DATASET
We created an environment where theorem proving is modelled as
a sequential decision process. Initially, the environment will load a
selected theorem and we have access to the top level state. At each
time-step, the agent produces a proof step of arbitrary length. The
environment then applies the proof step to the top level state and
iterates the process if the theorem has not been proved. We show
the proof process of a simple theorem in Figure 1. The theorem
declaration initialises the first proof state. The proof states in the
middle row represent the stage of the proof progress and the proof
steps in the bottom row are what the agent should produce. We
support three different kinds of inputs: with proof states only, with
previous steps only, and with both proof states and previous steps.
For example, the previous steps when the agent should produce

proof (prove)
goal (1 subgoal):
1. A ⟶ A

proof (prove)
goal (1 subgoal):
1. A ⟹ A

proof (prove)
goal:
No subgoals!

theorem I:
?A ⟶ ?A

apply
(rule impI)

apply
assumption

done

theorem

proof
state

proof step

theorem I:
"A ⟶ A"

Figure 1: An illustration of the relationship between theo-
rems, proof states, and proof steps.

"done" consist of "apply (rule impI)" and "apply assumption". Be-
cause Isabelle provides a Partially Observable Markov Decision
Process (POMDP) with the proof states being the observation, con-
ditioning on the previous steps of the proof helps the agent to
reconstruct the state of the proof.
The unique feature that Isabelle enables in our system is that we
can execute proofs token by token. The benefits brought by this
feature include that we can make copies of a certain proof state and
try multiple different methods very conveniently. This also allows
us to change the order in which a proof is written, which makes
proof sketching possible: we can potentially first sketch a proof
skeleton containing the keyword “sorry”, which assumes that the
given statement before it can be proven. Then, by saving all the
states before the “sorry” command and attempting them after the
skeleton has been completed, we allow a machine to write proofs
in the same order a human sometimes would.
With this environment, we mined a total of 183K theorems from the
Isabelle standard library [11] and theArchive of Formal Proofs (AFP) [1].
We then extracted a total of 2.16 million pairs of inputs and proof
steps. This forms a dataset useful for theorem proving: if an agent
can produce the correct proof step when prompted with an arbi-
trary proof state, it will be able to prove the theorem. We used
a 95%/1%/4% random split to divide the proof corpus into the
train/valid/test sets. We show some dataset statistics in Table 1.

3 EXPERIMENTS
3.1 Setup
We started by taking a language model pre-trained on theWebMath
dataset for 72B tokens, similar to the GPT-f models applied to
Metamath [12] and Lean [5]. We then fine-tuned the language

Source length Target length
min max mean median min max mean median

With proof states only 7 227831 379.6 187.0
2 6522 34.2 19.0With previous steps only 17 138581 3223.6 980.0

With both proof states and previous steps 60 229885 3612.2 1328.2
Table 1: Sequence length in characters

models only on the AFP part of the dataset, due to time constraints.
The architecture we chose was a decoder-only transformer similar
to GPT-3 [4]. All models have 163M non-embedding parameters. We
use the same BPE encoding as GPT-3 [4]. For fine-tuning, we used
a batch size of 2048, a learning rate of 0.005, a 100-step ramp-up,
and decayed the learning rate according to a cosine schedule over
64B tokens; we early-stopped according to validation perplexity
after 35B elapsed tokens.

3.2 Evaluation
We used a best-first search strategy at evaluation, similar to that
of [5, 12]. We initialise and maintain a priority queue of top level
states, sorted by their cumulative log probability. The cumulative
log probability of a top level state is the sum of log probabilities of
all the previous proof steps the agent takes to arrive at the current
state. Initially, the priority queue contains only the top level state
right after the declaration of the theorem, with a cumulative log
probability of 0. At each search step, we pop the head of the priority
queue to retrieve the top level state with the highest probability.
We then query the language model for a set of 16 proof step can-
didates, with a temperature of 1.0. For each of the candidates, we
duplicate the top level state, apply the candidate to it, and calculate
the updated cumulative log probability. If the application of the
candidate is successful, we add the resulted top level state to the
queue. The queue has a length of 16 (i.e. it only maintains 16 entries
with the highest cumulative log probabilities). If one of the resulted
top level state shows that the proof is complete, we consider the
proof attempt successful. If the queue is empty, or a timeout of 120s
is spent on one attempt, or the number of queries exceeds 100, we
consider the attempt a failure.

3.3 Results
We evaluated our language model with the best-first search strat-
egy on a test set of 4000 theorems. 33.2% of the theorems were
successfully proved. We analysed the failure causes of the rest of
the theorems. 59.1% of the attempts failed because of the time lim-
itation, 0.2% of the attempts failed because of the query number
limitation and 7.6% of the attempts failed because the priority queue
was empty at some point in the proving process. We show two suc-
cessful proofs generated by our language model, and contrast them
with the proofs in the AFP.
Theorem 1 is a lemma in Utility.thy from the AFP entry Executable
Matrix Operations on Matrices of Arbitrary Dimensions [13]. Our
proof is a one-liner and much simpler than the original proof. We
checked the validity of some generated proofs manually by writing
them in Isabelle with the same dependency as the original proofs.

Theorem 1 lemma foldr_foldr_concat:
"foldr (foldr f) m a = foldr f (concat m) a"
Original proof
proof (induct m arbitrary: a)
case Nil show ?case by simp
next
case (Cons v m a)
show ?case
unfolding concat.simps foldr_Cons o_def Cons
unfolding foldr_append by simp
qed
Our proof
by (induct m arbitrary: a) simp_all

Theorem 2 is a lemma in Word_Lemmas.thy from the AFP entry
Finite Machine Word Library [2]. Although our proof is longer than
the original, it utilises a different set of lemmas to finish the proof,
and is written in a very different style compared to the original. This
demonstrates that our proof search agent with language models is
capable of discovering novel and interesting proofs.

Theorem 2 lemma scast_ucast_1:
"[[is_down (ucast :: ’a word ⇒ ’b word);
is_down (ucast :: ’b word⇒ ’c word)]] =⇒
(scast (ucast (a :: ’a::len word) :: ’b::len word) :: ’c::len word) =
ucast a"
Original proof
by (metis down_cast_same ucast_eq ucast_down_wi)
Our proof
using unat_ucast
apply -
apply (simp add:ucast_def unat_ucast)+
apply (subst down_cast_same[symmetric])
apply (simp add: is_down)+
apply (rule word_eqI)
apply (simp add: nth_ucast)
apply safe
apply simp
done

As a baseline, we also considered using greedy search. This is equiv-
alent to best-first search with the queue length = 1. This agent, as a
consequence, only proved 28.3% of the theorems.

4 CONCLUSIONS AND FUTUREWORK
We extracted a large corpus from Isabelle proofs and examined
the performance of language models in proving theorems on the
dataset. We showed that a non-trivial proportion of problems on
AFP can be solved by the application of a language model and a

2

best-first search. The successful proofs demonstrated the language
model’s ability to compose succinct, or novel proofs.
The proof assistant Isabelle provides a very convenient command
that allows users to conjecture ("have"). With our environment that
interacts with the proof assistant in a very flexible manner, and
our rich dataset, we can set out to further study how machines
can learn to conjecture, and to reason about the proof construction
more generally. Specifically, by learning from human conjectures,
computer-assisted theorem provers are endowed with the ability
to sketch proofs. This can be organically integrated with symbolic
methods such as “nitpick” and “sledgehammer”.

REFERENCES
[1] AFP 2021. Archive of Formal Proofs. Retrieved Feb 11, 2021 from https://www.isa-

afp.org/index.html
[2] Joel Beeren, Matthew Fernandez, Xin Gao, Gerwin Klein, Rafal Kolanski, Japheth

Lim, Corey Lewis, Daniel Matichuk, and Thomas Sewell. 2016. Finite Machine
Word Library. Archive of Formal Proofs (June 2016). https://isa-afp.org/entries/
Word_Lib.html, Formal proof development.

[3] James P. Bridge, Sean B. Holden, and Lawrence C. Paulson. 2014. Machine
Learning for First-Order Theorem Proving - Learning to Select a GoodHeuristic. J.
Autom. Reason. 53, 2 (2014), 141–172. https://doi.org/10.1007/s10817-014-9301-5

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina

Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/
hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[5] Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W. Ayers, and Stanislas Polu.
2021. Proof Artifact Co-training for Theorem Proving with Language Models.
CoRR abs/2102.06203 (2021). arXiv:2102.06203 https://arxiv.org/abs/2102.06203

[6] Geoffrey Irving, Christian Szegedy, Alexander A. Alemi, Niklas Eén, François
Chollet, and Josef Urban. 2016. DeepMath - Deep Sequence Models for Premise
Selection. InAdvances in Neural Information Processing Systems 29: Annual Confer-
ence on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon,
and Roman Garnett (Eds.). 2235–2243. https://proceedings.neurips.cc/paper/
2016/hash/f197002b9a0853eca5e046d9ca4663d5-Abstract.html

[7] Dennis Lee, Christian Szegedy, Markus N. Rabe, SarahM. Loos, and Kshitij Bansal.
2020. Mathematical Reasoning in Latent Space. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net. https://openreview.net/forum?id=Ske31kBtPr

[8] Wenda Li, Lei Yu, YuhuaiWu, and Lawrence Paulson. 2021. IsarStep: a Benchmark
for High-level Mathematical Reasoning. (2021).

[9] Yutaka Nagashima. 2020. Simple Dataset for Proof Method Recommendation in
Isabelle/HOL. In International Conference on Intelligent Computer Mathematics.

[10] Yutaka Nagashima and Yilun He. 2018. PaMpeR: Proof Method Recommendation
System for Isabelle/HOL. CoRR (2018). http://arxiv.org/abs/1806.07239

[11] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. 2002. Isabelle/HOL:
a proof assistant for higher-order logic. Vol. 2283. Springer Science & Business
Media.

[12] Stanislas Polu and Ilya Sutskever. 2020. Generative Language Modeling for
Automated Theorem Proving. CoRR abs/2009.03393 (2020). arXiv:2009.03393
https://arxiv.org/abs/2009.03393

[13] Christian Sternagel and René Thiemann. 2010. Executable Matrix Operations
on Matrices of Arbitrary Dimensions. Archive of Formal Proofs (June 2010).
https://isa-afp.org/entries/Matrix.html, Formal proof development.

[14] Josef Urban, Jirí Vyskocil, and Petr Stepánek. 2011. MaLeCoP Machine Learning
Connection Prover. In Automated Reasoning with Analytic Tableaux and Related
Methods - 20th International Conference, TABLEAUX 2011, Bern, Switzerland, July
4-8, 2011. Proceedings (Lecture Notes in Computer Science), Kai Brünnler and
George Metcalfe (Eds.), Vol. 6793. Springer, 263–277. https://doi.org/10.1007/978-
3-642-22119-4_21

3

https://www.isa-afp.org/index.html
https://www.isa-afp.org/index.html
https://isa-afp.org/entries/Word_Lib.html
https://isa-afp.org/entries/Word_Lib.html
https://doi.org/10.1007/s10817-014-9301-5
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2102.06203
https://arxiv.org/abs/2102.06203
https://proceedings.neurips.cc/paper/2016/hash/f197002b9a0853eca5e046d9ca4663d5-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/f197002b9a0853eca5e046d9ca4663d5-Abstract.html
https://openreview.net/forum?id=Ske31kBtPr
http://arxiv.org/abs/1806.07239
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2009.03393
https://isa-afp.org/entries/Matrix.html
https://doi.org/10.1007/978-3-642-22119-4_21
https://doi.org/10.1007/978-3-642-22119-4_21

	Abstract
	1 Introduction
	2 Environment and Dataset
	3 Experiments
	3.1 Setup
	3.2 Evaluation
	3.3 Results

	4 Conclusions and Future Work
	References

