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ABSTRACT
We introduce an environment that allows interaction with an Is-
abelle server in an incremental manner. With this environment,
we mined the Isabelle standard library and the Archive of Formal
Proofs (AFP) and extracted 183K lemmas and theorems. We built
languagemodels on this large corpus and showed their effectiveness
in proving AFP theorems.

1 INTRODUCTION
There has been a surge of interests recently in applying machine
learning models for theorem provers. Examples include [3, 6–8, 12,
14], all of which demonstrate great promises of machine learning
models in proving new theorems. In this work, we propose to mine
the libraries used by the Interactive Theorem Prover (ITP) Isabelle,
namely, the Isabelle standard library and the Archive of Formal
Proofs. The libraries have been mined previously for proof method
recommendations based on hand-crafted features [9, 10].

Contributions

• We built an environment where agents can interact with the
Isabelle theorem prover in an incremental manner. This enables
learning-based agents to conjecture in the Isar language.

• Wemined the Archive of Formal Proofs and the standard library
of Isabelle. We extracted 183K theorems and 2.16M proof steps.
This is one of the largest proof corpora for interactive theorem
provers.

• We trained large language models on this corpus and obtained
the first results of using such models to prove theorems in this
new dataset.

2 ENVIRONMENT AND DATASET
We created an environment where theorem proving is modelled as
a sequential decision process. Initially, the environment will load a
selected theorem and we have access to the top level state. At each
time-step, the agent produces a proof step of arbitrary length. The
environment then applies the proof step to the top level state and
iterates the process if the theorem has not been proved. We show
the proof process of a simple theorem in Figure 1. The theorem
declaration initialises the first proof state. The proof states in the
middle row represent the stage of the proof progress and the proof
steps in the bottom row are what the agent should produce. We
support three different kinds of inputs: with proof states only, with
previous steps only, and with both proof states and previous steps.
For example, the previous steps when the agent should produce

proof (prove)
goal (1 subgoal):
1. A ⟶ A

proof (prove)
goal (1 subgoal):
1. A ⟹ A

proof (prove)
goal:
No subgoals!

theorem I: 
?A ⟶ ?A

apply 
(rule impI) 

apply 
assumption

done

theorem

proof 
state

proof step

theorem I: 
"A ⟶ A"

Figure 1: An illustration of the relationship between theo-
rems, proof states, and proof steps.

"done" consist of "apply (rule impI)" and "apply assumption". Be-
cause Isabelle provides a Partially Observable Markov Decision
Process (POMDP) with the proof states being the observation, con-
ditioning on the previous steps of the proof helps the agent to
reconstruct the state of the proof.
The unique feature that Isabelle enables in our system is that we
can execute proofs token by token. The benefits brought by this
feature include that we can make copies of a certain proof state and
try multiple different methods very conveniently. This also allows
us to change the order in which a proof is written, which makes
proof sketching possible: we can potentially first sketch a proof
skeleton containing the keyword “sorry”, which assumes that the
given statement before it can be proven. Then, by saving all the
states before the “sorry” command and attempting them after the
skeleton has been completed, we allow a machine to write proofs
in the same order a human sometimes would.
With this environment, we mined a total of 183K theorems from the
Isabelle standard library [11] and theArchive of Formal Proofs (AFP) [1].
We then extracted a total of 2.16 million pairs of inputs and proof
steps. This forms a dataset useful for theorem proving: if an agent
can produce the correct proof step when prompted with an arbi-
trary proof state, it will be able to prove the theorem. We used
a 95%/1%/4% random split to divide the proof corpus into the
train/valid/test sets. We show some dataset statistics in Table 1.

3 EXPERIMENTS
3.1 Setup
We started by taking a language model pre-trained on theWebMath
dataset for 72B tokens, similar to the GPT-f models applied to
Metamath [12] and Lean [5]. We then fine-tuned the language



Source length Target length
min max mean median min max mean median

With proof states only 7 227831 379.6 187.0
2 6522 34.2 19.0With previous steps only 17 138581 3223.6 980.0

With both proof states and previous steps 60 229885 3612.2 1328.2
Table 1: Sequence length in characters

models only on the AFP part of the dataset, due to time constraints.
The architecture we chose was a decoder-only transformer similar
to GPT-3 [4]. All models have 163M non-embedding parameters. We
use the same BPE encoding as GPT-3 [4]. For fine-tuning, we used
a batch size of 2048, a learning rate of 0.005, a 100-step ramp-up,
and decayed the learning rate according to a cosine schedule over
64B tokens; we early-stopped according to validation perplexity
after 35B elapsed tokens.

3.2 Evaluation
We used a best-first search strategy at evaluation, similar to that
of [5, 12]. We initialise and maintain a priority queue of top level
states, sorted by their cumulative log probability. The cumulative
log probability of a top level state is the sum of log probabilities of
all the previous proof steps the agent takes to arrive at the current
state. Initially, the priority queue contains only the top level state
right after the declaration of the theorem, with a cumulative log
probability of 0. At each search step, we pop the head of the priority
queue to retrieve the top level state with the highest probability.
We then query the language model for a set of 16 proof step can-
didates, with a temperature of 1.0. For each of the candidates, we
duplicate the top level state, apply the candidate to it, and calculate
the updated cumulative log probability. If the application of the
candidate is successful, we add the resulted top level state to the
queue. The queue has a length of 16 (i.e. it only maintains 16 entries
with the highest cumulative log probabilities). If one of the resulted
top level state shows that the proof is complete, we consider the
proof attempt successful. If the queue is empty, or a timeout of 120s
is spent on one attempt, or the number of queries exceeds 100, we
consider the attempt a failure.

3.3 Results
We evaluated our language model with the best-first search strat-
egy on a test set of 4000 theorems. 33.2% of the theorems were
successfully proved. We analysed the failure causes of the rest of
the theorems. 59.1% of the attempts failed because of the time lim-
itation, 0.2% of the attempts failed because of the query number
limitation and 7.6% of the attempts failed because the priority queue
was empty at some point in the proving process. We show two suc-
cessful proofs generated by our language model, and contrast them
with the proofs in the AFP.
Theorem 1 is a lemma in Utility.thy from the AFP entry Executable
Matrix Operations on Matrices of Arbitrary Dimensions [13]. Our
proof is a one-liner and much simpler than the original proof. We
checked the validity of some generated proofs manually by writing
them in Isabelle with the same dependency as the original proofs.

Theorem 1 lemma foldr_foldr_concat:
"foldr (foldr f) m a = foldr f (concat m) a"
Original proof
proof (induct m arbitrary: a)
case Nil show ?case by simp
next
case (Cons v m a)
show ?case
unfolding concat.simps foldr_Cons o_def Cons
unfolding foldr_append by simp
qed
Our proof
by (induct m arbitrary: a) simp_all

Theorem 2 is a lemma in Word_Lemmas.thy from the AFP entry
Finite Machine Word Library [2]. Although our proof is longer than
the original, it utilises a different set of lemmas to finish the proof,
and is written in a very different style compared to the original. This
demonstrates that our proof search agent with language models is
capable of discovering novel and interesting proofs.

Theorem 2 lemma scast_ucast_1:
"[[ is_down (ucast :: ’a word ⇒ ’b word);
is_down (ucast :: ’b word⇒ ’c word) ]] =⇒
(scast (ucast (a :: ’a::len word) :: ’b::len word) :: ’c::len word) =
ucast a"
Original proof
by (metis down_cast_same ucast_eq ucast_down_wi)
Our proof
using unat_ucast
apply -
apply (simp add:ucast_def unat_ucast)+
apply (subst down_cast_same[symmetric])
apply (simp add: is_down)+
apply (rule word_eqI)
apply (simp add: nth_ucast)
apply safe
apply simp
done

As a baseline, we also considered using greedy search. This is equiv-
alent to best-first search with the queue length = 1. This agent, as a
consequence, only proved 28.3% of the theorems.

4 CONCLUSIONS AND FUTUREWORK
We extracted a large corpus from Isabelle proofs and examined
the performance of language models in proving theorems on the
dataset. We showed that a non-trivial proportion of problems on
AFP can be solved by the application of a language model and a
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best-first search. The successful proofs demonstrated the language
model’s ability to compose succinct, or novel proofs.
The proof assistant Isabelle provides a very convenient command
that allows users to conjecture ("have"). With our environment that
interacts with the proof assistant in a very flexible manner, and
our rich dataset, we can set out to further study how machines
can learn to conjecture, and to reason about the proof construction
more generally. Specifically, by learning from human conjectures,
computer-assisted theorem provers are endowed with the ability
to sketch proofs. This can be organically integrated with symbolic
methods such as “nitpick” and “sledgehammer”.
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