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Introduction Many automated theorem provers are based on backward chaining: reasoning
starts from a goal statement which we aim to prove and each inference step reduces one of the
goals to a (possibly empty) set of new subgoals. We thus maintain a set of open goals that need
to be proven and the proof is complete once the open goal set becomes empty. For each goal,
there can be several valid inferences, resulting in different successor goal sets and selecting the
right inference constitutes the core problem of such theorem provers which has been thoroughly
studied in the past half century.

There is, however, another decision to make during proof search, which has been largely un-
derappreciated in the theorem proving community: this is the order in which we select goals
from the open goal set. When goals do not share variables, their ordering is irrelevant as their
proofs do not influence each other. However, variables establish connections between goals and
a certain proof of one goal can result in variable instantiations that make it impossible to prove
another goal.

The importance of subgoal ordering is recognised in the SETHEO [7] system. The authors give
heuristic justifications for starting with goals that are less likely to succeed and use various
manually crafted features to approximate this ordering. [2] use this heuristic ordering and show
that when one proof attempt of one first goal fails, it is sometimes better to proceed with
another goal before trying alternative attempts of the same goal.

In this paper, we look at the leanCoP [8] connection tableau calculus and explore how goal
ordering influences theorem proving performance. leanCoP is a first order theorem prover
which translates the problem into clausal normal form and builds a proof tree whose nodes
are goals, using two kinds of inference steps: extension steps add children to a leaf node while
reduction steps close leaf nodes. In leanCoP both steps are applied on the leftmost open node
by default.

Goal Ordering Database When an extension step adds children to a leaf node, their order
is determined and fixed by the order of literals in the input clauses. We start by building
a database that reflects the effect of permuting the newly added goals. We introduce two
modifictions to leanCoP: 1) we keep track of the number of inference steps for each goal and
2) after each extension, we attempt to finish the proof using all possible permutations of the
new goals. Suppose our input clause set is C, the current goal is G, we select clause (-G, H)
where H = Hy, Hs, ..., H, to extend G and permutation o(H) yields a complete proof of G in
I steps. Then we add the following tuple to our database:

<C,G,H,0,0(H),I >
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When all permutations of a given (G, H) pair yield the same inference count, then the corre-
sponding tuples are omitted. To avoid infinite branches, we impose a time limit 7" on the proof
of each subgoal after depth D.

Heuristic Goal Ordering Our database aims to provide experimental evidence for the sen-
sibility of goal ordering. We demonstrate its benefit by constructing a heuristic goal ordering
strategy upon manual inspection of the data.

We run data extraction on a small set of 131 problems (referred to as the training set) from
the Mizar40 [4] dataset, extracted from the Mizar Mathematical Library [1]. We employ a time
limit of 10 sec for each subgoal. Upon observing the output, we indentify the following simple
heuristics:

1. Negative literals should be tried before positive ones.

2. Equality predicates should be proven before other predicates.

3. Equality predicates with variables on both sides should be proven after any other predi-
cates.

We evaluate this heuristic ordering using original leanCoP (without data extraction) and com-
pare it with three baselines: original, random ordering and reverse ordering. Besides the
small training set that we used for constructing the ordering, we evaluate on the larger M2k [3]
benchmark introduced in [5], which consists of 2003 problems from Mizar40.

Table 1: Performance on the training and M2k datasets using various goal orderings: heuristic,
original, random, reverse. We enforce a 1 sec time limit per problem. Succ is the number
of problems proven and Inf is the average number of inferences in successful proofs.

heuristic original reverse random
Succ Inf | Succ Inf | Succ Inf | Succ Inf
training | 53 4900 | 46 2504 | 47 1173 | 46 2553

M2k 824 2938 | 712 3103 | 783 3041 | 707 2388

Table 1 shows that our simple ordering brings a significant improvement of 16%, in the number
of problems proven, on both datasets. The performance of original leanCoP is at par with
random ordering, as expected. However, it is rather surprising that simply reversing the goals
improves performance. These results demonstrate that ordering does make a big impact on the
performance of the system.

The number of inferences required by the various orderings is harder to compare as they are
averaged on different sets of problems. However, we can compare two orderings on the set
of problems that are solved by both. Heuristic ordering requires less inferences than original,
reverse ordering and random ordering in 60%, 65%, 52% (training set) and 60%, 69%, 65%
(M2k) of these problems, respectively.

Learning Guided Goal Ordering Our simple heuristic ordering is the result of a superficial
human glance over the extracted data. It is certainly not optimal and certainly not universal for
all datasets. It was merely meant to demonstrate that there are useful patterns to be extracted
from goal ordering statistics. The next logical step is to use machine learning and use a trained
model for goal ordering. We experiment with various machine learning frameworks available
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in Python and expose the trained models to the Prolog implementation of leanCoP via the
pyswip [9] package. We have implemented the full pipeline of data generation, model training
and evaluation and very recently started running learning assisted experiments.

Predicting a permutation of input elements is not a typical machine learning task and we
considered three approaches of modeling it:

1. Build a model that gets a sequence of goals and returns a score. This is what our database
provides directly, however, model evaluation involves running the model on all permuta-
tions of the input and selecting the one that maximizes the output.

2. Build a model that takes a single goal and returns a score. The goals are then evaluated
separately and ordered based on the output. This approach is faster to evaluate then
the previous one, however, it is not guaranteed that there exists a proper goal scoring
function that is consistent with the scores assigned to the permutations in the dataset.

3. Build a sequence to sequence model that returns the optimal permutation of the input
sequence. This is the easiest to evaluate, however, it requires the most sophisticated
functionality from the model.

So far, we have experimented with the first approach, i.e., training a model that turns the input
sequence into a single score. For embedding of goals, we used the features introduced in [6].
These features do not take the current goal into account, only the structure of the clause that
the goal is resolved with, hence, we can precompute the clause orderings before proof search,
resulting in a constant computational overhead.

Our experimental results are preliminary, but in the current state, we find that it is rather
easy to obtain great (above 90%) accuracy on the training data with shallow (2-3 layer) neural
networks. However, it is much harder to see any improvement in terms of problems solved. We
are currently working to find the best training architecture and parameters.

Conclusion and Future Work Our work explores the effect of changing the order in which
goals are proven in a backward chaining theorem prover. We modify the leanCoP connection
tableau calculus to extract statistics about different orderings and then use a manually designed
heuristic ordering to demonstrate the potential of the extracted data in designing ordering
guidance. We believe that even stronger guidance is achievable using machine learning, which
is the focus of our ongoing work.
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