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1 Motivation: ATP Evaluation over Large Benchmarks

When developing an Automated Theorem Prover (ATP), like E [21], Vampire [16], or
Prover9 [18], one often needs to evaluate the prover over a large set of benchmark problems.
This is typically done to empirically evaluate a new implementation when a new feature or a
new proof search strategy are implemented in the prover.

There are several standardized and well-established libraries of first-order problems main-
tained with the goal to help developers to evaluate the generality of their provers. First of
all, there is the TPTP library of problems in the TPTP language [22], which became widely
adopted by the ATP community. Next, a large number of problems are being translated from
large mathematical libraries of interactive theorem provers like Mizar [10], Coq [7], and Is-
abelle [19], by dedicated systems [4] like MPTP [24], CoqHammer [8], and SledgeHammer [5].
Moreover, an annual automated theorem prover competition (CADE) [23] introduces special
tracks with additional interesting problems, like problems coming from the AIM project [15].

Evaluating a single prover strategy over all first-order problems in TPTP with a standard
time limit (like 5 minutes) can easily take several hours, even with the help of massive paral-
lelization. The situation gets even worse when more than one strategy, or a parametric strategy
with many arguments, needs to be evaluated. This is usually approached by restricting the eval-
uation time limit or by selecting a random benchmark subset to obtain the evaluation results
in a reasonable time.

On the other hand, within large problem libraries, many of the problems can be syntacti-
cally similar or even duplicate. Since similar prover performance can be expected with similar
problems, the identification of similar problems can help us to speed up the evaluation. Here
we propose a method to construct the benchmark characteristic subset by employing standard
machine learning methods for clustering [20]. The desired property of this characteristic subset
is that it faithfully characterizes all benchmark problems. That is, that any development, like
parameter tuning or scheduler construction, performed on this subset yields similar results as
the same development performed on all benchmark problems, but faster.

2 Benchmark Clustering and Characteristic Subsets

Our proposed method to construct the benchmark characteristic subset is to employ clustering
algorithms. Clustering algorithms can partition a set of entities into classes, called clusters,
such that similar entities appear in the same cluster. As the benchmark characteristic subset
should not contain similar problems, we propose to cluster all benchmark problems and to
construct the characteristic subset by selecting one or a few problems from each cluster.
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Problem Features. To employ clustering algorithms, such as the k-means [17] algorithm,
benchmark problems need to be represented by numeric feature vectors. We propose two meth-
ods to compute feature vectors.

(1) To use the ENIGMA features [12, 13, 6, 11] based on symbol-independent clause syntax.
The ENIGMA features are designed to represent first-order clauses by encapsulating vari-
ous syntactic properties, like clause length, variable count, and various encodings of clause
syntax trees. We plan to represent each problem by accumulating ENIGMA features of
the problem clauses.

(2) To compute performance features obtained from the statistics of short probing prover
runs. We perform short resource-limited runs with several E Prover strategies, and we
extract several runtime statistics, like the number of processed/generated clauses, the
count of performed rewriting steps, and so on.

Clustering. We employ several clustering algorithms, such as the k-means [17] algorithm
and the density-based DBSCAN [9]. From each cluster, we select one or a few problem repre-
sentants, and we add them to the benchmark characteristic subset. Thus, the desired size of
the characteristic subset can be controlled by the count of clusters. Hence, we can compute
characteristic subsets of various sizes.

Benchmarks. We propose two separate experiments. The first is on the first-order problems
from TPTP [22]. The second is on Mizar40 [14] problems coming from translation of the Mizar
Mathematical Library [10] to first-order logic.

Evaluation. Once the benchmark characteristic subsets of different sizes are computed, we
need to evaluate their quality. The first evaluation method is based on the construction of
the best cover. Suppose we evaluate the set of prover strategies S on all benchmark problems
P . We can then construct the strategy subset S0 ⊆ S (of a given size) which maximizes the
performance on a given benchmark characteristic subset P0 ⊆ P . The subset S0 is called the
best cover on P0. We can compare the performance of S0 on all problems P with the best cover
S′ computed on all problems P and measure their relative error. Moreover, we can compute the
relative error of the best covers constructed on the random benchmark subsets. Then we can
verify that our benchmark characteristic subsets provide a better benchmark characterization
than random subsets of the same size.

Another method of evaluation is based on a parameter search performed on a problem subset.
For example, we can perform a parameter grid search on the parameters of a parametrized prover
strategy. Then we can compare the performance of the best parameters found on a benchmark
characteristic subset with the best parameters found on a random subset of the same size.

Related Work. A similar approach to construct a benchmark characteristic subset, limited
to the use of performance features and to the evaluation on the best cover construction, has
been recently1 successfully experimented with using the SMT-LIB library [1, 2] with the help of
the CVC4 [3] solver to compute performance features. Here we shift our attention to the TPTP
problems, we experiment with syntactic problem features, and we provide additional clustering
and evaluation methods.

1Currently under review.
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