
Creation of a modular proof assistant engine
for a logic e-tutor

Jakub Dakowski1, Aleksandra Draszewska1, Barbara Adamska1,
Dominika Juszczak1, Łukasz Abramowicz1, and Robert Szymański1

Adam Mickiewicz University, Poznań, Poland
larch.amu@gmail.com

1 Background
There have been several attempts at creating Intelligent Tutoring Systems (i.e. applications
that provide intelligent teaching support for their users) for several proof methods in formal
logic. Huertas [6] counts 8 e-tutors created in the first decade of this century. Nowadays such
software usually can give demonstrations and in some cases finish proofs that have already been
started [4]. Such programs use many different strategies for obtaining hints. Unfortunately,
most of these programs tend to implement only one formal system with a fixed syntax and
static output form.

2 Aim
This project, called Larch, aims at improving these aspects of Intelligent Tutoring Systems.
It’s an application designed in hopes of creating a middleman between the researchers trying
to implement new hint generation mechanisms and users who usually are unaccustomed to the
complicated notation used in formal logic and hard to use interfaces. It was originally created
with Analytic Tableaux for Classical Propositional Logic [8] in mind, but recently efforts were
made to introduce sequent calculus to this system. Such software created the need for a system
that encapsulates the architecture of a typical logic e-tutor in the form of interchangeable
plugins.

3 Method
The discussed program was written in Python in line with its versatility and popularity. Python
ensures a low entry threshold for creating Larch plugins and at the same time, it doesn’t create
any major boundaries in terms of possible solutions.

Larch’s architecture was inspired by the Plugin Oriented Programming paradigm, in which
the codebase splits into modular and independent plugin subsystems with a central hub [7].
The plugin system used in Larch was created specifically for this project using the built-in
importlib module. Its central concept is a Socket, to which different plugins (these can be
both singular files and packages) can be connected via specific functions that are defined in a
plugin template. Plugins can still use core libraries and they also have their own socket libraries
(internally called utils files).

Five sockets have already been created: User Interface, Output generator, a tokenizer (inter-
nally called a Lexicon), a Formal System with a solver and a hint generator (called Assistant).
Here the last three components of this system are discussed.



A modular proof assistant Dakowski, Draszewska, Adamska, Juszczak, Abramowicz and Szymański

The most basic of the three is the Lexicon socket which specifies the alphabet used in
the program. It allows for simple customization of the used symbols. For example users can
quickly implement a notation which uses LATEX commands instead of the built-in method.
This is implemented using a class provided by the software. This class is in fact a wrapper for
the SLY package [1], which is a Python library used to create tokenizers and parsers. Such
implementation allows the users to define tokens which will be used only while certain formal
systems are plugged in. This wrapper also alleviates the hurdle of generating new tokens, thanks
in part to the exrex package [9].

The Formal socket’s role is to perform operations on the proof, check its correctness and finish
the proof if needed. As the software was designed to teach Analytic Tableaux for Propositional
Logic, one of the biggest dilemmas in this project was to create a system which will not end up
as a simple solver. Because of this a notion of strict and naive versions of rules was introduced.
When used incorrectly (for example using a rule for implications on a conjunction), naive rules
will produce a conclusion and strict rules will fail. In a way, strict rules are adequate and their
naive counterparts are complete, but not sound. Naive rules are used by the user, while the
strict rules are used by the checker and the solver (rule priority is implemented by storing the
rules in a tree). These structures are however completely optional and, if desired, this can be
implemented from the ground up.

The Formal socket interacts with the Assistant socket to provide the necessary hints and point
out user mistakes. In the beginning the Assistant socket also provided a solver, however, while
it can still use its own solver, this burden was shifted onto the Formal socket. Assistant socket
was given a more didactic role - it provides a knowledge base and generates feedback based
on Formal sockets activities. While it has a lot of freedom when it comes to generating hints,
commenting on user mistakes is a simple act of interpreting UserMistake objects generated by
the Formal socket.

Besides the plugin system, there are also different aspects allowing for this amount of freedom
in implementation. There is a context management system that ensures both proper information
for the user and the data needed to operate on the proof. Larch relies on context definition
objects created in the language’s plugin. These contain information about arguments (both
technical, such as type, and user-oriented, such as a readable name), which need to be provided
to a rule in order for it to work. To improve the readability of code this plugin management
system is connected directly to Python type hinting system. This way the context can be defined
with the naive rule functions. The data structure of the whole project consists of two elements.
The formulas are stored in a tree structure (implemented using anytree [2]) alongside their
history and the closedness of their branch. The second part consists of the proof’s metadata -
right now this is mainly rule history.

4 Applications
As Analytic Tableaux for Classical Propositional Logic was the original purpose of this tool,
it has already been implemented. Besides detecting and commenting on mistakes made by the
user, the program also produces High Level Hints [3] regarding proof length optimisation and
operation precedence. If need be it is also possible to implement Next Step Hints, however
these are not recommended — the software can be reduced to a solver when their usage is not
controlled.

There are also ongoing works on the sequent calculus for the Intuitionistic Propositional
Logic (based on the Swiss calculus by [5]). The Formal plugin has been mostly implemented,
but it still lacks a proper solver and a syntax checker. A custom Assistant plugin would also

2



A modular proof assistant Dakowski, Draszewska, Adamska, Juszczak, Abramowicz and Szymański

be beneficial. However, this still shows that, despite the major differences, it is possible to
introduce other formal systems in the form of plugins. Implementing the sequent calculus for
the Intuitionistic Propositional Logic will also allow for a better presentation of the hint and
improved error detection mechanisms.

5 Discussion and future work
The unique value of Larch comes from its ability to encapsulate other tools. With that being said
one should ask about the possibilities of such a tool. As of now, it was only tested on a relatively
straightforward proof method. This created a situation in which the hint generation couldn’t
be fully explored, both in the case of different formal systems and Intelligent Tutoring System
algorithms. In the future, these perspectives should be explored. The ongoing implementation
of the sequent calculus also shows that plugin systems should include diverse built-in libraries.
While it certainly is possible to implement new formal methods using what is available now,
better tools would facilitate this task.

This work shows a possible application of Plugin Oriented Programming in Automated
Theorem Proving, but it is not the only one. Similar techniques could be used to modularize
other systems and might someday produce a universal standard for logic-related libraries, which
would allow almost seamless interchangeability and code reusability. Even in the case of Larch,
its code might someday be used to create other software, either by reusing the plugins or by
reusing the engine gluing them together.

References
[1] David Beazley. Writing parsers and compilers with ply. PyCon’07, 2007.
[2] c0fec0de. anytree, Dec 2019.
[3] Christa Cody, Behrooz Mostafavi, and Tiffany Barnes. Investigation of the influence of hint type

on problem solving behavior in a logic proof tutor. In International Conference on Artificial Intelli-
gence in Education, pages 58–62. Springer, 2018. https://link.springer.com/chapter/10.1007/
978-3-319-93846-2_11.

[4] Cristiano Galafassi, Fabiane FP Galafassi, Eliseo B Reategui, and Rosa M Vicari. Evologic: Intelli-
gent tutoring system to teach logic. In Brazilian Conference on Intelligent Systems, pages 110–121.
Springer, 2020. https://link.springer.com/chapter/10.1007/978-3-030-61377-8_8.

[5] Jacob M Howe. Two loop detection mechanisms: a comparison. In International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods, pages 188–200. Springer, 1997.

[6] Antonia Huertas. Ten years of computer-based tutors for teaching logic 2000-2010: Lessons learned.
In International Congress on Tools for Teaching Logic, pages 131–140. Springer, 2011. https:
//link.springer.com/chapter/10.1007/978-3-642-21350-2_16.

[7] Tobias Macey and Thomas Hatch. Making complex software fun and flexible with plu-
gin oriented programming. Podcast.__init__, 2019. https://www.pythonpodcast.com/
plugin-oriented-programming-episode-240/.

[8] Raymond M. Smullyan. First-order logic. Dover, 1995.
[9] Adam Tauber. exrex, Jun 2017.

3

https://link.springer.com/chapter/10.1007/978-3-319-93846-2_11
https://link.springer.com/chapter/10.1007/978-3-319-93846-2_11
https://link.springer.com/chapter/10.1007/978-3-030-61377-8_8
https://link.springer.com/chapter/10.1007/978-3-642-21350-2_16
https://link.springer.com/chapter/10.1007/978-3-642-21350-2_16
https://www.pythonpodcast.com/plugin-oriented-programming-episode-240/
https://www.pythonpodcast.com/plugin-oriented-programming-episode-240/

	Background
	Aim
	Method
	Applications
	Discussion and future work

