
Yutaka Nagashima, AITP, France, September 2020

SeLFiE: Semantic Logical Feature Extractor
LiFtEr: Logical Feature Extractor

Automation of proof by induction in
Isabelle/HOL using Domain-Specific
Languages

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466).

Why proof by induction?

2

Why proof by induction?

2

(Proof by induction) is thus a vital ingredient of formal methods for
synthesising, verifying and transforming software and hardware. (1999)

Austintate
https://en.wikipedia.org/wiki/Alan_Bundy#/media/File:Alan.Bundy.Image.jpg

http://creativecommons.org/licenses/by-sa/3.0/

Why proof by induction?

3

(Proof by induction) is thus a vital ingredient of formal methods for
synthesising, verifying and transforming software and hardware. (1999)

Austintate
https://en.wikipedia.org/wiki/Alan_Bundy#/media/File:Alan.Bundy.Image.jpg

http://creativecommons.org/licenses/by-sa/3.0/

Why proof by induction?

3

(Proof by induction) is thus a vital ingredient of formal methods for
synthesising, verifying and transforming software and hardware. (1999)

Austintate
https://en.wikipedia.org/wiki/Alan_Bundy#/media/File:Alan.Bundy.Image.jpg

http://creativecommons.org/licenses/by-sa/3.0/

Why proof by induction?

3

(Proof by induction) is thus a vital ingredient of formal methods for
synthesising, verifying and transforming software and hardware. (1999)

Austintate
https://en.wikipedia.org/wiki/Alan_Bundy#/media/File:Alan.Bundy.Image.jpg

http://creativecommons.org/licenses/by-sa/3.0/
https://era.ed.ac.uk/bitstream/handle/1842/4748/BundyA_Rippling%20A%20Heuristic.pdf;sequence=1

Why proof by induction?

3

(Proof by induction) is thus a vital ingredient of formal methods for
synthesising, verifying and transforming software and hardware. (1999)

Austintate
https://en.wikipedia.org/wiki/Alan_Bundy#/media/File:Alan.Bundy.Image.jpg

http://creativecommons.org/licenses/by-sa/3.0/
https://era.ed.ac.uk/bitstream/handle/1842/4748/BundyA_Rippling%20A%20Heuristic.pdf;sequence=1

http://www.cse.chalmers.se/~jomoa/papers/isaplanner-v2-07.pdf

Why proof by induction?

3

(Proof by induction) is thus a vital ingredient of formal methods for
synthesising, verifying and transforming software and hardware. (1999)

Austintate
https://en.wikipedia.org/wiki/Alan_Bundy#/media/File:Alan.Bundy.Image.jpg

http://creativecommons.org/licenses/by-sa/3.0/
https://era.ed.ac.uk/bitstream/handle/1842/4748/BundyA_Rippling%20A%20Heuristic.pdf;sequence=1

http://www.cse.chalmers.se/~jomoa/papers/isaplanner-v2-07.pdf

Why proof by induction?

3

(Proof by induction) is thus a vital ingredient of formal methods for
synthesising, verifying and transforming software and hardware. (1999)

Austintate
https://en.wikipedia.org/wiki/Alan_Bundy#/media/File:Alan.Bundy.Image.jpg

http://creativecommons.org/licenses/by-sa/3.0/
https://era.ed.ac.uk/bitstream/handle/1842/4748/BundyA_Rippling%20A%20Heuristic.pdf;sequence=1

http://www.cse.chalmers.se/~jomoa/papers/isaplanner-v2-07.pdf

https://doi.org/10.1007/978-3-319-63046-5_32

Proof by induction is hard!

4

https://www.logic.at/staff/gramlich/

Proof by induction is hard!

4

https://www.logic.at/staff/gramlich/

Proof by induction is hard!

4

https://www.logic.at/staff/gramlich/

In the near future, ITP (Inductive theorem proving) will only be successful
for very specialised domains for very restricted classes of conjectures.

Proof by induction is hard!

4

https://www.logic.at/staff/gramlich/

In the near future, ITP (Inductive theorem proving) will only be successful
for very specialised domains for very restricted classes of conjectures.

we are convinced that … spectacular breakthroughs are unrealistic, in
view of the enormous problems and the inherent difficulty of inductive

theorem proving. (2005)

Proof by induction is important.

Proof by induction is hard.

Proof by induction is important.

Proof by induction is hard.

Proof by induction is important.

Proof by induction is hard.

DEMO
proof by induction in Isabelle/HOL

The example theorem is taken from “Isabelle/HOL A Proof
Assistant for Higher-Order Logic” Tobias Nipkow, Lawrence C.

Paulson, Markus Wenzel page 36

Proof by induction is important.

Proof by induction is hard.

functional induction

using the induction rule “itrev.induct”

structural induction on xs while generalising ys

my previous work (2016 - 2017)

my previous work (2016 - 2017)

my previous work (2016 - 2017)

my previous work (2016 - 2017)

Good for easy problems.

my previous work (2016 - 2017)

Good for easy problems.

Bad for hard problems.

Good news for automation.

Bad news for automation.

(For most cases) we only have to pass the right arguments to the induction tactic.

Good news for automation.

Bad news for automation.

(For most cases) we only have to pass the right arguments to the induction tactic.

Names do not matter globally. Structures matter.

Good news for automation.

Bad news for automation.

(For most cases) we only have to pass the right arguments to the induction tactic.

Names do not matter globally. Structures matter.

All theorems must be different.

Good news for automation.

Bad news for automation.

(For most cases) we only have to pass the right arguments to the induction tactic.

Names do not matter globally. Structures matter.

All theorems must be different.

We should not have many similar theorems.

Good news for automation.

Bad news for automation.

(For most cases) we only have to pass the right arguments to the induction tactic.

Names do not matter globally. Structures matter.

All theorems must be different.

We should not have many similar theorems.

Good news for automation.

Bad news for automation.
Neural network?

(For most cases) we only have to pass the right arguments to the induction tactic.

Names do not matter globally. Structures matter.

All theorems must be different.

We should not have many similar theorems.

Good news for automation.

Bad news for automation.
Neural network?

<- many concrete cases

<- one abstract representation

(For most cases) we only have to pass the right arguments to the induction tactic.

Names do not matter globally. Structures matter.

All theorems must be different.

We should not have many similar theorems.

Good news for automation.

Bad news for automation.
Neural network?

lo
gi

c <- abstraction using expressive logic

M
L

<- many concrete cases

<- one abstract representation

(For most cases) we only have to pass the right arguments to the induction tactic.

Names do not matter globally. Structures matter.

All theorems must be different.

We should not have many similar theorems.

Good news for automation.

Bad news for automation.
Neural network?

lo
gi

c <- abstraction using expressive logic

M
L

<- many concrete cases

<- one abstract representation

(For most cases) we only have to pass the right arguments to the induction tactic.

Names do not matter globally. Structures matter.

All theorems must be different.

We should not have many similar theorems.

Good news for automation.

Bad news for automation.
Neural network?

∀? λ?

∀? λ? logic?

∀? λ? logic?

LiFtEr: Logical Feature
Extraction

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- one abstract representation

M
L

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Grand Challenge: Abstract Abstraction

<- one abstract representation

M
L

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Grand Challenge: Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Grand Challenge: Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

lo
gi

c

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Grand Challenge: Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

lo
gi

c <- pros: good at rigorous abstraction

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Grand Challenge: Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]
lo

gi
c <- pros: good at rigorous abstraction

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Grand Challenge: Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]
lo

gi
c <- pros: good at rigorous abstraction

M
L

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Grand Challenge: Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]
<- pros: good at ambiguity (heuristics)

lo
gi

c <- pros: good at rigorous abstraction

M
L

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Grand Challenge: Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]
<- pros: good at ambiguity (heuristics)

Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

lo
gi

c <- pros: good at rigorous abstraction

M
L

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Grand Challenge: Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]
<- pros: good at ambiguity (heuristics)

Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

lo
gi

c <- pros: good at rigorous abstraction

M
L

LiFtEr :
Logical
Feature

Extraction

Example Heuristic in LiFtEr (in Abstract Syntax)

implication

Example Heuristic in LiFtEr (in Abstract Syntax)

conjunction

implication

Example Heuristic in LiFtEr (in Abstract Syntax)

conjunction

variable for auxiliary lemmas

implication

Example Heuristic in LiFtEr (in Abstract Syntax)

conjunction

variable for auxiliary lemmas

variable for terms

implication

Example Heuristic in LiFtEr (in Abstract Syntax)

conjunction

variable for auxiliary lemmas

variable for terms

variable for term occurrences

implication

Example Heuristic in LiFtEr (in Abstract Syntax)

conjunction

variable for auxiliary lemmas

variable for terms

variable for term occurrences

variable for natural numbers

implication

Example Heuristic in LiFtEr (in Abstract Syntax)

universal
quantifier

conjunction

variable for auxiliary lemmas

variable for terms

variable for term occurrences

variable for natural numbers

implication

Example Heuristic in LiFtEr (in Abstract Syntax)

existential quantifier

universal
quantifier

conjunction

variable for auxiliary lemmas

variable for terms

variable for term occurrences

variable for natural numbers

implication

Example Heuristic in LiFtEr (in Abstract Syntax)

existential quantifier

universal
quantifier

conjunction

variable for auxiliary lemmas

variable for terms

variable for term occurrences

variable for natural numbers

implication

Example Heuristic in LiFtEr (in Abstract Syntax)

LiFtEr heuristic: (proof goal * induction arguments) -> bool

existential quantifier

universal
quantifier

conjunction

variable for auxiliary lemmas

variable for terms

variable for term occurrences

variable for natural numbers

implication

Example Heuristic in LiFtEr (in Abstract Syntax)

LiFtEr heuristic: (proof goal * induction arguments) -> bool
should be true if induction is good
should be false if induction is bad

good induction ->

r1

(r1 = itrev.induct)

good induction ->

r1

(r1 = itrev.induct)

good induction ->

r1

(r1 = itrev.induct)
(t1 = itrev)

good induction ->

r1

(r1 = itrev.induct)
(t1 = itrev)

to1

(to1 = itrev)

good induction ->

r1

(r1 = itrev.induct)
(t1 = itrev)

to1

(to1 = itrev)

good induction ->

r1

(r1 = itrev.induct)
(t1 = itrev)

to1

(to1 = itrev)
True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

good induction ->

r1

(r1 = itrev.induct)
(t1 = itrev)

to1

(to1 = itrev)
True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

good induction ->

r1

(r1 = itrev.induct)
(t1 = itrev)

to1

(to1 = itrev)
True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

good induction ->

r1

(r1 = itrev.induct)
(t1 = itrev)

to1

(to1 = itrev)
True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

good induction ->

r1

(r1 = itrev.induct)
(t1 = itrev)

to1

(to1 = itrev)

t2

(t2 = xs and ys)

True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

good induction ->

r1

(r1 = itrev.induct)
(t1 = itrev)

to1

(to1 = itrev)

t2

(t2 = xs and ys)

to2

(to2 = xs and ys)

True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

good induction ->

r1

(r1 = itrev.induct)
(t1 = itrev)

to1

(to1 = itrev)

t2

(t2 = xs and ys)

to2

(to2 = xs and ys)

True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

good induction ->

r1

(r1 = itrev.induct)
(t1 = itrev)

to1

(to1 = itrev)

t2

(t2 = xs and ys)

to2

(to2 = xs and ys)

True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

good induction ->

first

first

r1

(r1 = itrev.induct)
(t1 = itrev)

to1

(to1 = itrev)

t2

(t2 = xs and ys)

to2

(to2 = xs and ys)

True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

when t2 is xs (n = 1) ?

good induction ->

first

first

r1

(r1 = itrev.induct)
(t1 = itrev)

to1

(to1 = itrev)

t2

(t2 = xs and ys)

to2

(to2 = xs and ys)

True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

when t2 is xs (n = 1) ?

good induction ->

first

first

second

second

r1

(r1 = itrev.induct)
(t1 = itrev)

to1

(to1 = itrev)

t2

(t2 = xs and ys)

to2

(to2 = xs and ys)

True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

when t2 is xs (n = 1) ?

when t2 is ys (n = 2) ?

good induction ->

first

first

second

second

r1

(r1 = itrev.induct)
(t1 = itrev)

to1

(to1 = itrev)

t2

(t2 = xs and ys)

to2

(to2 = xs and ys)

True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

when t2 is xs (n = 1) ?

when t2 is ys (n = 2) ?

good induction ->

first

first

second

second

r1

(r1 = itrev.induct)
(t1 = itrev)

to1

(to1 = itrev)

t2

(t2 = xs and ys)

to2

(to2 = xs and ys)

True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

when t2 is xs (n = 1) ?

when t2 is ys (n = 2) ?

good induction ->

first

first

second

second

r1

(r1 = itrev.induct)
(t1 = itrev)

to1

(to1 = itrev)

t2

(t2 = xs and ys)

to2

(to2 = xs and ys)

True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

when t2 is xs (n = 1) ?

when t2 is ys (n = 2) ?

good induction ->

Heuristic correctly returns
true to the good induction.

first

first

second

second

r1

(r1 = itrev.induct)
(t1 = itrev)

to1

(to1 = itrev)

t2

(t2 = xs and ys)

to2

(to2 = xs and ys)

True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

when t2 is xs (n = 1) ?

when t2 is ys (n = 2) ?

good induction ->

Heuristic correctly returns
true to the good induction.

Success!

the same LiFtEr heuristic

the same LiFtEr heuristic

same lemma ->

the same LiFtEr heuristic

bad induction ->

same lemma ->

the same LiFtEr heuristic

bad induction ->

same lemma ->

the same LiFtEr heuristic

bad induction ->

same lemma ->

the same LiFtEr heuristic

bad induction ->

same lemma ->

the same LiFtEr heuristic

Heuristic correctly returns
false to the bad induction.

bad induction ->

same lemma ->

the same LiFtEr heuristicSuccess!

Heuristic correctly returns
false to the bad induction.

LiFtEr at APLAS2019 and Smart Induct at FMCAD2020 (nest week)

https://doi.org/10.1007/978-3-030-34175-6_14

LiFtEr at APLAS2019 and Smart Induct at FMCAD2020 (nest week)

https://doi.org/10.5281/zenodo.3960303

https://doi.org/10.1007/978-3-030-34175-6_14

LiFtEr at APLAS2019 and Smart Induct at FMCAD2020 (nest week)

https://doi.org/10.5281/zenodo.3960303

https://doi.org/10.1007/978-3-030-34175-6_14

LiFtEr at APLAS2019 and Smart Induct at FMCAD2020 (nest week)

On which variables to apply induction

https://doi.org/10.5281/zenodo.3960303

https://doi.org/10.1007/978-3-030-34175-6_14

LiFtEr at APLAS2019 and Smart Induct at FMCAD2020 (nest week)

On which variables to apply induction Variable generalisation

https://doi.org/10.5281/zenodo.3960303

https://doi.org/10.1007/978-3-030-34175-6_14

LiFtEr at APLAS2019 and Smart Induct at FMCAD2020 (nest week)

On which variables to apply induction Variable generalisation

Names do not matter globally. Structures matter.

Bad news for automation.

https://doi.org/10.5281/zenodo.3960303

https://doi.org/10.1007/978-3-030-34175-6_14

LiFtEr at APLAS2019 and Smart Induct at FMCAD2020 (nest week)

On which variables to apply induction Variable generalisation

Names do not matter globally. Structures matter.

Bad news for automation.

Names do not matter globally at all.
Syntactic structures matter a little.
Semantics of constructs matter a lot.

alternative good proof by induction with generalisation

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

alternative good proof by induction with generalisation

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

alternative good proof by induction with generalisation

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

alternative good proof by induction with generalisation

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

alternative good proof by induction with generalisation

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

alternative good proof by induction with generalisation

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

alternative good proof by induction with generalisation

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

} LiFtEr

alternative good proof by induction with generalisation

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

} LiFtEr

} LiFtEr

alternative good proof by induction with generalisation

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

} LiFtEr
}SeLFiE

} LiFtEr

alternative good proof by induction with generalisation

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

} LiFtEr
}SeLFiE

} LiFtEr

} outer part for syntactic analysis

alternative good proof by induction with generalisation

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

} LiFtEr
}SeLFiE

} LiFtEr } inner part for semantic analysis

} outer part for syntactic analysis

alternative good proof by induction with generalisation

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

} LiFtEr
}SeLFiE

} LiFtEr } inner part for semantic analysis

} outer part for syntactic analysis

SeLFiE
outer

inner

alternative good proof by induction with generalisation

proof

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

} LiFtEr
}SeLFiE

} LiFtEr } inner part for semantic analysis

} outer part for syntactic analysis

SeLFiE
outer

inner

alternative good proof by induction with generalisation

proof

(…)
definitions and auxiliary

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

} LiFtEr
}SeLFiE

} LiFtEr } inner part for semantic analysis

} outer part for syntactic analysis

SeLFiE
outer

inner

alternative good proof by induction with generalisation

proof

(…)
definitions and auxiliary

outer
SeLFiE

(1)

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

} LiFtEr
}SeLFiE

} LiFtEr } inner part for semantic analysis

} outer part for syntactic analysis

SeLFiE
outer

inner

alternative good proof by induction with generalisation

proof

(…)
definitions and auxiliary

inner
outer

SeLFiE

(1)

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

} LiFtEr
}SeLFiE

} LiFtEr } inner part for semantic analysis

} outer part for syntactic analysis

SeLFiE
outer

inner

alternative good proof by induction with generalisation

proof

(…)
definitions and auxiliary

inner
outer

SeLFiE

(1)

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

} LiFtEr
}SeLFiE

} LiFtEr } inner part for semantic analysis

} outer part for syntactic analysis

SeLFiE
outer

inner

(2)

alternative good proof by induction with generalisation

proof

(…)
definitions and auxiliary

inner

LiFtEr

}

(3)

outer
SeLFiE

(1)

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

} LiFtEr
}SeLFiE

} LiFtEr } inner part for semantic analysis

} outer part for syntactic analysis

SeLFiE
outer

inner

(2)

alternative good proof by induction with generalisation

(4)

proof

(…)
definitions and auxiliary

inner

LiFtEr

}

(3)

outer
SeLFiE

(1)

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

} LiFtEr
}SeLFiE

} LiFtEr } inner part for semantic analysis

} outer part for syntactic analysis

SeLFiE
outer

inner

(2)

alternative good proof by induction with generalisation

(4)

proof

(…)
definitions and auxiliary

inner

(5)

LiFtEr

}

(3)

outer
SeLFiE

(1)

“Isabelle/HOL A Proof Assistant for Higher-Order Logic”
Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

} LiFtEr
}SeLFiE

} LiFtEr } inner part for semantic analysis

} outer part for syntactic analysis

SeLFiE
outer

inner

(2)

alternative good proof by induction with generalisation

(4)

proof

(…)
definitions and auxiliary

inner

(5)

LiFtEr

}

(3)

outer
SeLFiE

(1)

}

boolean

(6)
“Isabelle/HOL A Proof Assistant for Higher-Order Logic”

Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

} LiFtEr
}SeLFiE

} LiFtEr } inner part for semantic analysis

} outer part for syntactic analysis

SeLFiE
outer

inner

(2)

alternative good proof by induction with generalisation

(4)

proof

(…)
definitions and auxiliary

inner

(5)

LiFtEr

}

(3)

(7)

outer
SeLFiE

(1)

}

boolean

(6)
“Isabelle/HOL A Proof Assistant for Higher-Order Logic”

Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

} LiFtEr
}SeLFiE

} LiFtEr } inner part for semantic analysis

} outer part for syntactic analysis

SeLFiE
outer

inner

(2)

alternative good proof by induction with generalisation

(4)

proof

(…)
definitions and auxiliary

inner

(5)

LiFtEr

}

(3)

(7)

outer
SeLFiE

(1)

}

boolean

(6)
“Isabelle/HOL A Proof Assistant for Higher-Order Logic”

Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel page 36

} LiFtEr
}SeLFiE

} LiFtEr } inner part for semantic analysis

} outer part for syntactic analysis

SeLFiE
outer

inner

boolean

(8)

(2)

alternative good proof by induction with generalisation

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

outer assertion

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

outer assertion

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

outer assertion

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

outer assertion

in_some_definition (
f_term,

generalized_nth_argument_of,
[genearlize_nth, f_term])

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

outer assertion

in_some_definition (
f_term,

generalized_nth_argument_of,
[genearlize_nth, f_term])

<- key to look up the defining clauses

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

outer assertion

in_some_definition (
f_term,

generalized_nth_argument_of,
[genearlize_nth, f_term])

<- key to look up the defining clauses
<- name of inner_assertion

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

outer assertion

in_some_definition (
f_term,

generalized_nth_argument_of,
[genearlize_nth, f_term])

<- key to look up the defining clauses
<- name of inner_assertion

<- arguments from outer-to-inner

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

outer assertion

inner assertion

(= generalized_nth_argument_of)

in_some_definition (
f_term,

generalized_nth_argument_of,
[genearlize_nth, f_term])

<- key to look up the defining clauses
<- name of inner_assertion

<- arguments from outer-to-inner

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

outer assertion

inner assertion

(= generalized_nth_argument_of)

in_some_definition (
f_term,

generalized_nth_argument_of,
[genearlize_nth, f_term])

<- key to look up the defining clauses
<- name of inner_assertion

<- arguments from outer-to-inner

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

outer assertion

inner assertion

(= generalized_nth_argument_of)

in_some_definition (
f_term,

generalized_nth_argument_of,
[genearlize_nth, f_term])

<- key to look up the defining clauses
<- name of inner_assertion

<- arguments from outer-to-inner

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

outer assertion

inner assertion

(= generalized_nth_argument_of)

in_some_definition (
f_term,

generalized_nth_argument_of,
[genearlize_nth, f_term])

<- key to look up the defining clauses
<- name of inner_assertion

<- arguments from outer-to-inner

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

outer assertion

inner assertion

(= generalized_nth_argument_of)

in_some_definition (
f_term,

generalized_nth_argument_of,
[genearlize_nth, f_term])

<- key to look up the defining clauses
<- name of inner_assertion

<- arguments from outer-to-inner

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

outer assertion

inner assertion

(= generalized_nth_argument_of)

in_some_definition (
f_term,

generalized_nth_argument_of,
[genearlize_nth, f_term])

<- key to look up the defining clauses
<- name of inner_assertion

<- arguments from outer-to-inner

xs is the first argument of itrev.
If we apply induction on xs

should we generalise ys, which is the second argument of itrev?

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

outer assertion

inner assertion

(= generalized_nth_argument_of)

in_some_definition (
f_term,

generalized_nth_argument_of,
[genearlize_nth, f_term])

<- key to look up the defining clauses
<- name of inner_assertion

<- arguments from outer-to-inner

xs is the first argument of itrev.
If we apply induction on xs

should we generalise ys, which is the second argument of itrev?

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

[2, itrev]

outer assertion

inner assertion

(= generalized_nth_argument_of)

in_some_definition (
f_term,

generalized_nth_argument_of,
[genearlize_nth, f_term])

<- key to look up the defining clauses
<- name of inner_assertion

<- arguments from outer-to-inner

xs is the first argument of itrev.
If we apply induction on xs

should we generalise ys, which is the second argument of itrev?

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

[2, itrev]

outer assertion

inner assertion

(= generalized_nth_argument_of)

in_some_definition (
f_term,

generalized_nth_argument_of,
[genearlize_nth, f_term])

<- key to look up the defining clauses
<- name of inner_assertion

<- arguments from outer-to-inner

xs is the first argument of itrev.
If we apply induction on xs

should we generalise ys, which is the second argument of itrev?

Yes. In the second clause defining itrev, the second
argument changes from the LHS to RHS.

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

[2, itrev]

outer assertion

inner assertion

(= generalized_nth_argument_of)

in_some_definition (
f_term,

generalized_nth_argument_of,
[genearlize_nth, f_term])

<- key to look up the defining clauses
<- name of inner_assertion

<- arguments from outer-to-inner

xs is the first argument of itrev.
If we apply induction on xs

should we generalise ys, which is the second argument of itrev?

Yes. In the second clause defining itrev, the second
argument changes from the LHS to RHS.

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

[2, itrev]
true

outer assertion

inner assertion

(= generalized_nth_argument_of)

in_some_definition (
f_term,

generalized_nth_argument_of,
[genearlize_nth, f_term])

<- key to look up the defining clauses
<- name of inner_assertion

<- arguments from outer-to-inner

xs is the first argument of itrev.
If we apply induction on xs

should we generalise ys, which is the second argument of itrev?

Yes. In the second clause defining itrev, the second
argument changes from the LHS to RHS.

} LiFtEr
}SeLFiE

} LiFtEr

SeLFiE
outer

inner

DEMO
semantic_induct

The example theorem is taken from “Isabelle/HOL A Proof
Assistant for Higher-Order Logic” Tobias Nipkow, Lawrence C.

Paulson, Markus Wenzel page 36

my work (2020)

my work (2020)

my work (2020)

goal

Build semantic_induct using SeLFiE

goal

Step 1: smart construction of induction terms and induction rule

Build semantic_induct using SeLFiE

goal

Step 1: smart construction of induction terms and induction rule

Step 2: filtering out unpromising tactics

Build semantic_induct using SeLFiE

goal

Step 1: smart construction of induction terms and induction rule

Step 2: filtering out unpromising tactics

Step 3: rank tactics using SeLFiE heuristics

1818 1818 172020

Build semantic_induct using SeLFiE

goal

Step 1: smart construction of induction terms and induction rule

Step 2: filtering out unpromising tactics

Step 3: rank tactics using SeLFiE heuristics

1818 1818 172020

Build semantic_induct using SeLFiE

goal

Step 1: smart construction of induction terms and induction rule

Step 2: filtering out unpromising tactics

Step 3: rank tactics using SeLFiE heuristics

1818 1818 172020

Step 4: construct generalisation variables

Build semantic_induct using SeLFiE

goal

Step 1: smart construction of induction terms and induction rule

Step 2: filtering out unpromising tactics

Step 3: rank tactics using SeLFiE heuristics

1818 1818 172020

1818 1820 18 18 2020 18

Step 5: filter out unpromising tactics

Step 4: construct generalisation variables

Build semantic_induct using SeLFiE

goal

Step 1: smart construction of induction terms and induction rule

Step 2: filtering out unpromising tactics

Step 3: rank tactics using SeLFiE heuristics

1818 1818 172020

1818 1820 18 18 2020 18

18 1820 1820

Step 5: filter out unpromising tactics

Step 6: rank tactics using SeLFiE heuristics for generalisation

Step 4: construct generalisation variables

Build semantic_induct using SeLFiE

goal

Step 1: smart construction of induction terms and induction rule

Step 2: filtering out unpromising tactics

Step 3: rank tactics using SeLFiE heuristics

1818 1818 172020

1818 1820 18 18 2020 18

18 1820 1820

Step 5: filter out unpromising tactics

2022242628

Step 6: rank tactics using SeLFiE heuristics for generalisation

Step 4: construct generalisation variables

Build semantic_induct using SeLFiE

goal

Step 1: smart construction of induction terms and induction rule

Step 2: filtering out unpromising tactics

Step 3: rank tactics using SeLFiE heuristics

1818 1818 172020

1818 1820 18 18 2020 18

18 1820 1820

Step 5: filter out unpromising tactics

2022242628

Step 6: rank tactics using SeLFiE heuristics for generalisation

Step 4: construct generalisation variables

Build semantic_induct using SeLFiE

recommendation using SeLFiE

recommendation using SeLFiE recommendation using LiFtEr

recommendation using SeLFiE recommendation using LiFtEr

SeLFiE

Future work

https://doi.org/10.1007/978-3-319-96812-4_19

conjecturingSeLFiE

Future work

https://doi.org/10.1007/978-3-319-96812-4_19

conjecturingSeLFiE

https://doi.org/10.1007/978-3-319-63046-5_32

proof search

Future work

https://doi.org/10.1007/978-3-319-96812-4_19

conjecturingSeLFiE

==> fully automatic inductive prover in Isabelle/HOL

https://doi.org/10.1007/978-3-319-63046-5_32

proof search

Future work

https://doi.org/10.1007/978-3-319-96812-4_19

conjecturingSeLFiE

==> fully automatic inductive prover in Isabelle/HOL

https://doi.org/10.1007/978-3-319-63046-5_32

proof search

Future work

