
Learning Clause Deletion Heuristics with
Reinforcement Learning

(with a twist)

Pashootan Vaezipoor1, Gil Lederman2, Yuhuai Wu1,
Roger Grosse1 and Fahiem Bacchus1

1University of Toronto

2UC Berkeley

September 16, 2020



Goal: Use ML in order to build better SAT solvers to tackle
industrial-scale problems (e.g., SATCOMP).



Highlight

1. Preamble on SAT Heuristics
2. Earlier Efforts
3. Challenges of Gaining Wall-Clock Improvement on SAT
4. Problem Statement
5. Redemption (a.k.a. the twist)



Preamble on SAT Heuristics

Backtracking search algorithms for SAT (DPLL) gradually extend a
partial assignment by selecting a new variable to branch on at each
decision level. The partial assignment is extended until it becomes
a satisfying assignment, or until a conflict is reached.

Conflict-driven clause learning (CDCL) combines backtracking
search with clause learning. While DPLL simply backtracks out of
conflicts, CDCL “analyzes” the conflict by performing a couple of
resolution steps and “learns” a clause which is added to the list of
clauses in order to cut off large parts of the search space and
thereby speeds up the search process.



Preamble on SAT Heuristics

Backtracking search algorithms for SAT (DPLL) gradually extend a
partial assignment by selecting a new variable to branch on at each
decision level. The partial assignment is extended until it becomes
a satisfying assignment, or until a conflict is reached.

Conflict-driven clause learning (CDCL) combines backtracking
search with clause learning. While DPLL simply backtracks out of
conflicts, CDCL “analyzes” the conflict by performing a couple of
resolution steps and “learns” a clause which is added to the list of
clauses in order to cut off large parts of the search space and
thereby speeds up the search process.



Preamble on SAT Heuristics (cont.)

1. Clause Deletion: Audemard and Simon in 2009 devised a
new score to identify clauses that are likely to be used more
frequently in the future. The Literals Block Distance (LBD) of
a clause is the number of distinct decision levels of its literals
at the time of the conflict analysis.
Very aggressive clause deletion where half of the learnt clauses
are removed every ∼ 20000 conflicts, gives a significant boost
in performance.

2. Branching Heuristic: VSIDS has been the dominant heuristic
here, where an activity score is kept for each variable. Upon
each conflict the activity of variables involved in the conflict
are bumped, and every variable’s activity is periodically
decayed exponentially.



Earlier Efforts

QBF: Lederman, et al. "Learning Heuristics for Quantified Boolean
Formulas through Reinforcement Learning.", ICLR 2019.

SAT:
NeuroSAT NeuroCore GQSAT “deep”

WalkSAT
Training Alg. Supervised Supervised DQN REINFORCE

GNN? 4 4 4 4

Target Heuristic – Branching Branching Branching
Completeness 6 4 4 4

Problem Size (40, –)1 Scheduling
Problems

(300, 1000) rand(50, 213)

CDCL-based? 6 4 4 6

1(# variables, # clauses)



Challenges of Gaining Wall-Clock Improvement on SAT

I Problems with offline training:
I A solver is a dynamic process and changes to the heuristics

directly affect the landscape of future observations offline
training might fail to capture this non-stationary behaviour.

I There’s a need for a surrogate labeling mechanism for offline
learning.

I [Solution] RL can 1. better capture the dynamic nature
of the solver and 2. it allows for training the heuristic
directly towards optimizing the desired metric (e.g.,
number of decisions, running time, etc.)



Challenges of Gaining Wall-Clock Improvement on SAT

I Problems with offline training:
I A solver is a dynamic process and changes to the heuristics

directly affect the landscape of future observations offline
training might fail to capture this non-stationary behaviour.

I There’s a need for a surrogate labeling mechanism for offline
learning.

I [Solution] RL can 1. better capture the dynamic nature
of the solver and 2. it allows for training the heuristic
directly towards optimizing the desired metric (e.g.,
number of decisions, running time, etc.)



Challenges of Gaining Wall-Clock Improvement on SAT
I Problems with offline training:

I A solver is a dynamic process and changes to the heuristics
directly affect the landscape of future observations offline
training might fail to capture this non-stationary behaviour.

I There’s a need for a surrogate labeling mechanism for offline
learning.

I [Solution] Online Training (RL)
I Running time and its effect on (online) training

I The roll out of industrial instances takes hours

I Synthesizing SAT formulas that are amenable for training is
challenging on two fronts:

I Feasibility: Episode role outs should be reasonably fast
I Generalizability: formula should preserve some “structural

properties” of the real industrial instances
I [Solution 1] - simplify original formula f by attaching a

partial assignment m to it:
1. (SAT?,m)← Solve f with vanilla Glucose
2. if SAT?: m|r ← random subset of m
3. if ¬SAT?: m|r ← random assignment to subset of vars(f)
4. fsimp = f ∧

∧
u∈m|r u



Challenges of Gaining Wall-Clock Improvement on SAT
I Problems with offline training:

I A solver is a dynamic process and changes to the heuristics
directly affect the landscape of future observations offline
training might fail to capture this non-stationary behaviour.

I There’s a need for a surrogate labeling mechanism for offline
learning.

I [Solution] Online Training (RL)
I Running time and its effect on (online) training

I The roll out of industrial instances takes hours
I Synthesizing SAT formulas that are amenable for training is

challenging on two fronts:
I Feasibility: Episode role outs should be reasonably fast
I Generalizability: formula should preserve some “structural

properties” of the real industrial instances

I [Solution 1] - simplify original formula f by attaching a
partial assignment m to it:
1. (SAT?,m)← Solve f with vanilla Glucose
2. if SAT?: m|r ← random subset of m
3. if ¬SAT?: m|r ← random assignment to subset of vars(f)
4. fsimp = f ∧

∧
u∈m|r u



Challenges of Gaining Wall-Clock Improvement on SAT
I Problems with offline training:

I A solver is a dynamic process and changes to the heuristics
directly affect the landscape of future observations offline
training might fail to capture this non-stationary behaviour.

I There’s a need for a surrogate labeling mechanism for offline
learning.

I [Solution] Online Training (RL)
I Running time and its effect on (online) training

I The roll out of industrial instances takes hours
I Synthesizing SAT formulas that are amenable for training is

challenging on two fronts:
I Feasibility: Episode role outs should be reasonably fast
I Generalizability: formula should preserve some “structural

properties” of the real industrial instances
I [Solution 1] - simplify original formula f by attaching a

partial assignment m to it:
1. (SAT?,m)← Solve f with vanilla Glucose
2. if SAT?: m|r ← random subset of m
3. if ¬SAT?: m|r ← random assignment to subset of vars(f)
4. fsimp = f ∧

∧
u∈m|r u



Challenges of Gaining Wall-Clock Improvement on SAT

I Problems with offline training:
I A solver is a dynamic process and changes to the heuristics

directly effect the landscape of future observations offline
training might fail to capture this non-stationary behaviour.

I There’s a need for a surrogate labeling mechanism for offline
learning.

I [Solution] Online Training (RL)
I Running time and its effect on (online) training

I The roll out of industrial instances takes hours
I [Solution 1] Generate simplified instances
I [Solution 2] Use a surrogate reward (e.g., 1/glue level of

conflict clause learnt, J. Han "Enhancing SAT solvers
with glue variable predictions"



Challenges of Gaining Wall-Clock Improvement on SAT

I Problems with offline training:
I A solver is a dynamic process and changes to the heuristics

directly effect the landscape of future observations offline
training might fail to capture this non-stationary behaviour.

I There’s a need for a surrogate labeling mechanism for offline
learning.

I [Solution] Online Training (RL)
I Running time and its effect on (online) training

I The roll out of industrial instances takes hours
I [Solution 1] Generate simplified instances
I [Solution 2] Use a surrogate reward

I Industrial instances are huge making feasibility of GNNs
challenging

I [Solution] Either crop the problem graph or send delta
updates or possibly partition the graph and use
parallelism.



Challenges of Gaining Wall-Clock Improvement on SAT

I Problems with offline training:
I A solver is a dynamic process and changes to the heuristics

directly effect the landscape of future observations offline
training might fail to capture this non-stationary behaviour.

I There’s a need for a surrogate labeling mechanism for offline
learning.

I [Solution] Online Training (RL)
I Running time and its effect on (online) training

I The roll out of industrial instances takes hours
I [Solution 1] Generate simplified instances
I [Solution 2] Use a surrogate reward

I Industrial instances are huge making feasibility of GNNs
challenging
I [Solution] Either crop the problem graph or send delta

updates or possibly partition the graph and use
parallelism.



Challenges of Gaining Wall-Clock Improvement on SAT
(Cont.)

I Performance trade-offs during inference
I Millions of decisions can be made in a few seconds by SAT

solvers (branching)
I Forward pass of the NN can be expensive

I [Solution] Less frequent queries to the model, e.g., 1.
Periodic Refocusing; 2. Clause Reduction

I Action space explosion (Specifically for Clause Deletion)
I Clause Reduction receives a list of N(∼ 2000) clauses and

returns a binary vector in {0, 1}N
I The naive idea of deciding keep/drop per clause makes for an

exponential space
I In policy gradient algorithms that means huge “injected”

randomness and huge variance in gradient estimates
I [Solution] Threshold Policy: On every step, the policy

outputs a single real positive number. All clauses with
LBD score greater or equal to this threshold are deleted.



Challenges of Gaining Wall-Clock Improvement on SAT
(Cont.)

I Performance trade-offs during inference
I Millions of decisions can be made in a few seconds by SAT

solvers (branching)
I Forward pass of the NN can be expensive
I [Solution] Less frequent queries to the model, e.g., 1.

Periodic Refocusing; 2. Clause Reduction

I Action space explosion (Specifically for Clause Deletion)
I Clause Reduction receives a list of N(∼ 2000) clauses and

returns a binary vector in {0, 1}N
I The naive idea of deciding keep/drop per clause makes for an

exponential space
I In policy gradient algorithms that means huge “injected”

randomness and huge variance in gradient estimates
I [Solution] Threshold Policy: On every step, the policy

outputs a single real positive number. All clauses with
LBD score greater or equal to this threshold are deleted.



Challenges of Gaining Wall-Clock Improvement on SAT
(Cont.)

I Performance trade-offs during inference
I Millions of decisions can be made in a few seconds by SAT

solvers (branching)
I Forward pass of the NN can be expensive
I [Solution] Less frequent queries to the model, e.g., 1.

Periodic Refocusing; 2. Clause Reduction
I Action space explosion (Specifically for Clause Deletion)

I Clause Reduction receives a list of N(∼ 2000) clauses and
returns a binary vector in {0, 1}N

I The naive idea of deciding keep/drop per clause makes for an
exponential space

I In policy gradient algorithms that means huge “injected”
randomness and huge variance in gradient estimates

I [Solution] Threshold Policy: On every step, the policy
outputs a single real positive number. All clauses with
LBD score greater or equal to this threshold are deleted.



Refined Goal: Use RL in order to extract versatile heuristics for
complete solvers to tackle industrial-scale problems (e.g.,
SATCOMP).



Problem Statement

The environment E is a Markov Decision Process (MDP) with
states S, action space A, and rewards per time step rt ∈ R. In our
setting:
I E is the modern SAT Solver Glucose along with a set of

formulas

I Each step is equivalent to one garbage collection
I An episode is the result of the interaction of the agent with E

while solving a formula f
I Complete: Solver solved f successfully
I Incomplete: Solver was aborted due to some termination

criteria



Problem Statement

The environment E is a Markov Decision Process (MDP) with
states S, action space A, and rewards per time step rt ∈ R. In our
setting:
I E is the modern SAT Solver Glucose along with a set of

formulas
I Each step is equivalent to one garbage collection

I An episode is the result of the interaction of the agent with E
while solving a formula f
I Complete: Solver solved f successfully
I Incomplete: Solver was aborted due to some termination

criteria



Problem Statement

The environment E is a Markov Decision Process (MDP) with
states S, action space A, and rewards per time step rt ∈ R. In our
setting:
I E is the modern SAT Solver Glucose along with a set of

formulas
I Each step is equivalent to one garbage collection
I An episode is the result of the interaction of the agent with E

while solving a formula f

I Complete: Solver solved f successfully
I Incomplete: Solver was aborted due to some termination

criteria



Problem Statement

The environment E is a Markov Decision Process (MDP) with
states S, action space A, and rewards per time step rt ∈ R. In our
setting:
I E is the modern SAT Solver Glucose along with a set of

formulas
I Each step is equivalent to one garbage collection
I An episode is the result of the interaction of the agent with E

while solving a formula f
I Complete: Solver solved f successfully
I Incomplete: Solver was aborted due to some termination

criteria



Problem Statement (Cont.)

The environment E is a Markov Decision Process (MDP) with
states S, action space A, and rewards per time step rt ∈ R. In our
setting:
I The observations are a set of features that capture the

dynamic state of the solver, such as: average trail size, ratio of
the learned clauses, mean decision level and LBD histogram of
the last t steps (No GNN initially!)

I The reward is a deterministic operation counter acting as a
surrogate for solver’s performance.



Problem Statement (Cont.)

The environment E is a Markov Decision Process (MDP) with
states S, action space A, and rewards per time step rt ∈ R. In our
setting:
I The observations are a set of features that capture the

dynamic state of the solver, such as: average trail size, ratio of
the learned clauses, mean decision level and LBD histogram of
the last t steps (No GNN initially!)

I The reward is a deterministic operation counter acting as a
surrogate for solver’s performance.



(Negative) Results

Figure 1: We trained on simplified formulas from past few SAT
Competitions. The result is compared with Glucose on SAT competition
2018:



Culprits (conjectures)

I Clause deletion is a less direct method to change solver’s
behaviour.

I LBD is already too good and the ceiling is not high enough.
I The cost of querying a “better policy” is not justified by its

benefits.



The Twist – Neuro#2

We used our framework to target another problem:
1. Target another domain with smaller problem sizes: #SAT

I At each step the model only sees a subset of the entire graph
(component) making GNNs more feasible.

2. Target branching heuristic
3. Adopt Evolution Strategy (ES) instead of Policy Gradient

I ES injects randomness in weight space, which for us is much
smaller and most importantly, independent of number of
clauses/variables. (perhaps applicable to clause deletion too)

I No backprop (minor advantage)
4. Go distribution-specific!

I Target a specific family of problems
I Use a high-level generative procedure to produce problems of

varying sizes (small problems for training)
I No an unreasonable assumption in industry.

2"Learning Branching Heuristics for Propositional Model Counting"
(arxiv.org/abs/2007.03204)



The Twist – Neuro#2

We used our framework to target another problem:
1. Target another domain with smaller problem sizes: #SAT

I At each step the model only sees a subset of the entire graph
(component) making GNNs more feasible.

2. Target branching heuristic

3. Adopt Evolution Strategy (ES) instead of Policy Gradient
I ES injects randomness in weight space, which for us is much

smaller and most importantly, independent of number of
clauses/variables. (perhaps applicable to clause deletion too)

I No backprop (minor advantage)
4. Go distribution-specific!

I Target a specific family of problems
I Use a high-level generative procedure to produce problems of

varying sizes (small problems for training)
I No an unreasonable assumption in industry.

2"Learning Branching Heuristics for Propositional Model Counting"
(arxiv.org/abs/2007.03204)



The Twist – Neuro#2

We used our framework to target another problem:
1. Target another domain with smaller problem sizes: #SAT

I At each step the model only sees a subset of the entire graph
(component) making GNNs more feasible.

2. Target branching heuristic
3. Adopt Evolution Strategy (ES) instead of Policy Gradient

I ES injects randomness in weight space, which for us is much
smaller and most importantly, independent of number of
clauses/variables. (perhaps applicable to clause deletion too)

I No backprop (minor advantage)

4. Go distribution-specific!
I Target a specific family of problems
I Use a high-level generative procedure to produce problems of

varying sizes (small problems for training)
I No an unreasonable assumption in industry.

2"Learning Branching Heuristics for Propositional Model Counting"
(arxiv.org/abs/2007.03204)



The Twist – Neuro#2

We used our framework to target another problem:
1. Target another domain with smaller problem sizes: #SAT

I At each step the model only sees a subset of the entire graph
(component) making GNNs more feasible.

2. Target branching heuristic
3. Adopt Evolution Strategy (ES) instead of Policy Gradient

I ES injects randomness in weight space, which for us is much
smaller and most importantly, independent of number of
clauses/variables. (perhaps applicable to clause deletion too)

I No backprop (minor advantage)
4. Go distribution-specific!

I Target a specific family of problems
I Use a high-level generative procedure to produce problems of

varying sizes (small problems for training)
I No an unreasonable assumption in industry.

2"Learning Branching Heuristics for Propositional Model Counting"
(arxiv.org/abs/2007.03204)



Neuro# – Results

Cellular:

GridWorld:

Figure 2: Trained on instances of size 6k/25k (Cellular) and 300/1k
(Grid). Results are tested on instances of size 25k/102k (Cellular) and
2k/6k (Grid).



Neuro# – Results

Cellular GridWorld

Figure 3: Neuro# generalizes well to larger problems. Compare the
robustness of Neuro# vs. SharpSAT as the problem sizes increase. Solid
and dashed lines correspond to SharpSAT and Neuro#, respectively. All
episodes are capped at 100k steps.



Q&A

Thanks!


