Machine Learning and the Formalisation Of Mathematics: Research Challenges

Lawrence C Paulson FRS

AITP, Aussois 2020

Supported by the ERC Advanced Grant ALEXANDRIA (Project GA 742178).

1. Introducing ALEXANDRIA

Mathematicians are fallible

Look at the footnotes on a **single page** (118) of Jech's *The Axiom of Choice*

¹ The result of Problem 11 contradicts the results announced by Levy [1963b]. Unfortunately, the construction presented there cannot be completed.

² The transfer to ZF was also claimed by Marek [1966] but the outlined method appears to be unsatisfactory and has not been published.

³ A contradicting result was announced and later withdrawn by Truss [1970].

⁴ The example in Problem 22 is a counterexample to another condition of Mostowski, who conjectured its sufficiency and singled out this example as a test case.

⁵ The independence result contradicts the claim of Felgner [1969] that the Cofinality Principle implies the Axiom of Choice. An error has been found by Morris (see Felgner's corrections to [1969]).

We aim to link people, formal proofs and traditional mathematics

- Funded by the European Research Council (2017–22)
- Four postdoctoral researchers:
 - one Isabelle engineer (Wenda Li)
 - two professional mathematicians (Angeliki Koutsoukou-Argyraki and Anthony Bordg)
 - an expert on natural language/machine learning/ information retrieval (Yiannos Stathopoulos)

What have we been up to?

Building libraries of advanced mathematics

Writing verified computer algebra tools

Working on natural language search for theorems in our libraries Aiming to support the **re-use** of proof fragments

2. Structured Proofs

Tactic proofs: fit only for machines

let IVT = prove(faby.a <= b/ $(f(a) \le y / y \le f(b)) /$ (!x. a <= x / x <= b ==> f contl x)==> (?x. a <= x $(NDISCH PAC \land (x(x)(\overline{a} Y))'_{x'} \land x <= b / (f(x) = (y:real)))$ THEN REPEAT GEN TAC THEN DISCH THEN(MP TAC o SPEC `x:real`) THEN ASM REWRITE TAC[] THEN DISCH TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME ACT x. a <= x /\ x <= b ==> f contl x` THEN (CONJUNCTS_THEN2 MP_TACDISCH THEN (TUP TAC)) THEN ASSUM(MP_TAC o MATCH_MP th)) THEN CONV_TAC CONTRAPOS_CONV REPRITE TAC[cont1; LIM] THEN DISCH_THEN(ASSUME_TAC o DISCH_REPREN MP_FAC o SPEC abs(y - f(x:real))`) THEN (MP_TAC o C SPEC BOLZANOGEN REWRITE_TAC (funpow 2 LAND CONV) [GSYM ABSENZ]CONF TAC THENL `(u,v). a <= u /\ u <REWRITE TAC (funpow 2 LAND CONV) [GSYM ABSENZ]CONF TAC THENL `(u,v). a <= u /\ u <REWRITE TAC (FEAT SUB 6, REAL SUB RZERO] (THEN BEEN TAC [ABS_SUB] THEN CONV_TAC(ONCE_DEPTH_CONVAGEN BETA CONV) THEN REWRITE_TAC(map GSYM thas REWRITE TAC[ABS_SUB] THEN CONV_TAC(ONCE_DEPTH_CONVAGEN BETA CONV) THEN REWRITE_TAC(map GSYM thas REWRITE TAC[real_abs; REAL_SUB_LE; REAL_SUB_LT] THEN CONV_TAC(ONCE_DEPTH_CONVAGEN BETA CONV) THEN REWRITE_TAC(map GSYM thas REWRITE TAC[real_abs; REAL_SUB_LE; REAL_SUB_LT] THEN W(C SUBGOAL_THEN (fun t pisch THEN (XACHOOSE THEN d:real STRIP_ASSUMESMAREWRITE TAC [REAL_LT_LE] THEN DISCH_THEN SUBST_ALL_TAC THEN funpow 2 (fst o dest_impexfsfsdrac HENL real THEN ASM_REWRITE_TAC[] THEN DISCH_TAC `y < f(x:real) THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LE]; DISCH_THEN(MP_TAC o SPECEAT astrong then then astrong the astr MATCH MP TAC REAL LET TRANS THEN EXISTS_TAC `v - u` THEN ASM_REWRITE_TAC[REAL_LE_RADD; REAL_LE_NEG; REAL_LE_RADD] x`; `y:real`] REAM_REWRITE_TAC[Feal_sub; REAL_LE_LADD; REAL_LE_NEG; REAL_LE_RADD]; CONJ_TAC THENL ASM_REWRITE_TAC[] THEN DISCH_THEN DISJ_CASES_ARE THEWRITE_TAC[REAL_ADD_SYM] THEN REWRITE_TAC[REAL_SUB_ADD] THEN [MAP_EVERY X_GEN_TAC [`#igerlassum(UNDISCH TACCelleck is forall o converted to convert the taccellect of taccellect of the taccellect of t CONJ TAC THENL STRIP_TAC THEN ASM_REWRIREPEAF LOON DE TAC THENL MAP_EVERY ASM_CASES_TAC [[#SM=REWRITE TAC THENL MAP_EVERY ASM_CASES_TAC [[#SM=REWRITE TAC] THEN ASM_REWRITE TAC] [MATCH MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `y:real` THEN DISJ_CASES_TAC(SPECL [`y:real rewrITE TAC] REAL DIST ACTION REWRITE TAC]; ALL_TAC] THEN ASM_REWRITE_TAC[] THENL [DISJISTAC; DISJ2 TAC] THEN `THEN ASM_REWRITE TAC[GSYM REAL_NOT_LT] THEN MATCH MP_TAC PEAL LE TRANS THENLE TAC] THEN ASM_REWRITE TAC[GSYM REAL_NOT_LE]; MATCH_MP_TAC REAL_LE_TRANSASHEREWRITE_TAC[real_abs; REAL_SUB_LE] THEN [EXISTS_TAC `w:real`; EXIMATEHAMP HAC PREAL IEF TRANS REMENTEXISES ITAC `v - u` THEN ALL TAC] THEN ASM_REWRITE TAC[real sub; REAL LE LADD; REAL LE NEG; REAL LE RADD]; X_GEN_TAC `x:real` THEN ASM_GASESREWRITE TAC [REAL ADD SYM] HENEN REWRITE TAC [REAL SUB_ADD] THEN [ALL_TAC; EXISTS_TAC`&1` THEN REWRITE_TAC[REAL_NOT_LT; real_abs; REAL_SUB_LE] THEN EXISTS_TAC`&1` THEN REWRITEBGOAL THEN MAP_EVERY X_GEN_TAC [`u:reatMatch: MPatad REAL LT_IMP_LE THEN FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN REPEAT STRIP_TAC THEN UNDISCHOOL THEN ATCH MPATAMENTAC FEAL LE TRANS THENLE REPEAT STRIP_TAC THEN COND. TAC THEN MATCH MPATAMENTAC FEAL LE TRANS THENLE [ALL TAC; REWRITE_TAC[] THEN CONJ_TAC THEN TAC THEN TAC REAL REAL REAL TAC THEN EXISTS TAC `y:real`; ALL_TAC] THEN [EXISTS_TAC `u:real`; EXISTS_TACRITE real real sub; REAL_LE_RADD]]; ASM_REWRITE_TAC[]] THEN DISCH THEN(MP_TAC o SPEC `u - x`) THEN REWRITE_TAC[NOT_IMP] THEN ASM_REWRITE_TAC[REAL_NOT_LT; REAL_LE_NEG; real_sub; REAL_LE_RADD]]]);;

Where's the intuition?

By Kpengboy (Own work, based off Intermediatevaluetheorem.png), via Wikimedia Commons

Or again: a HOL Light tactic proof

```
let SIMPLE PATH SHIFTPATH = prove
 (`!g a. simple_path g /\ pathfinish g = pathstart g /\
         a IN interval[vec 0,vec 1]
         ==> simple path(shiftpath a g)`,
  REPEAT GEN TAC THEN REWRITE TAC[simple path] THEN
  MATCH MP TAC(TAUT
  `(a /\ c /\ d ==> e) /\ (b /\ c /\ d ==> f)
    ==> (a / b) / c / d ==> e / f) THEN
  CONJ TAC THENL [MESON TAC[PATH SHIFTPATH]; ALL TAC] THEN
  REWRITE TAC[simple path; shiftpath; IN INTERVAL 1; DROP VEC;
              DROP ADD; DROP SUB] THEN
  REPEAT GEN TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> c ==> a /\ b ==> d`] THEN
  STRIP TAC THEN REPEAT GEN TAC THEN
  REPEAT(COND CASES TAC THEN ASM REWRITE TAC[]) THEN
  DISCH THEN(fun th -> FIRST X ASSUM(MP TAC o C MATCH MP th)) THEN
  REPEAT(POP ASSUM MP TAC) THEN
  REWRITE TAC[DROP ADD; DROP SUB; DROP VEC; GSYM DROP EQ] THEN
  REAL ARITH TAC);;
```

The same, as a structured proof

```
lemma simple path shiftpath:
  assumes "simple path g" "pathfinish g = pathstart g" and a: "0 \le a" "a \le 1"
    shows "simple path (shiftpath a g)"
  unfolding simple path def
proof (intro conjI impI ballI)
  show "path (shiftpath a g)"
    by (simp add: assms path shiftpath simple path imp path)
  have *: "\land x y. [g x = g y; x \in \{0..1\}; y \in \{0..1\}] \implies x = y \lor x = 0 \land y = 1 \lor x = 1 \land y = 0"
    using assms by (simp add: simple path def)
  show "x = y \lor x = 0 \land y = 1 \lor x = 1 \land y = 0"
    if "x \in \{0..1\}" "y \in \{0..1\}" "shiftpath a g x = shiftpath a g y" for x y
    using that a unfolding shiftpath def
    by (force split: if split asm dest!: *)
```

ged

Proofs with gaps

It's natural to propose a chain of "stepping stones" from the assumptions to conclusion

> Users can fill these gaps in any order

Structured proofs are necessary!

- Because formal proofs should make sense to users
- ... reducing the need to trust our verification tools
- For reuse and eventual translation to other systems
- For *maintenance* (easily fix proofs that break due to changes to definitions... or **automation**)

With some other systems, users avoid automation for that reason!

3. Implications for ML

New possibilities for ML with structured proofs

- Working locally within a large proof
- Looking for just the next step (not the whole proof)
- Proof by analogy
- Identifying idioms

Lots of data

- About 230K proof lines in Isabelle's maths libraries: *Analysis, Complex Analysis, Number Theory, Algebra*
- Nearly 2.6M proof lines in the Archive of Formal Proofs (not all mathematics though)
- Hundreds of different authors: diverse styles and topics

Lots of structured "chunks"

- Structured proof fragments contain explicit assertions and context elements that could drive learning
- These might relate to natural mathematical steps
 - Proving a function to be continuous
 - Getting a ball around a point within an open set
 - Covering a compact set with finitely many balls

Where does prior work fit in?

- *TacticToe*, etc., aim to prove theorems automatically within the tactic paradigm, also predicting (just) the next tactic
- Gauthier et al. work on *statistical conjecturing* attempts term and formula synthesis

There's already a trend towards incremental proof construction (as opposed to full proofs)

It is essential to synthesise terms and formulas

Even tactics take arguments

Structured proofs mostly consist of explicit formulas

4. A Few Typical Proof Idioms

Inequality chains

```
have "!X m * Y m - X n * Y n! = !X m * (Y m - Y n) + (X m - X n) * Y n!"
unfolding mult_diff_mult ..
also have "... ≤ !X m * (Y m - Y n)! + !(X m - X n) * Y n!"
by (rule abs_triangle_ineq)
also have "... = !X m! * !Y m - Y n! + !X m - X n! * !Y n!"
unfolding abs_mult ..
also have "... < a * t + s * b"
by (simp_all add: add_strict_mono mult_strict_mono' a b i j *)
finally show "!X m * Y m - X n * Y n! < r"
by (simp only: r)</pre>
```

typically by the *triangle inequality*

with simple algebraic manipulations there are hundreds of examples

Simple topological steps

```
have "open (interior I)" by auto from openE[OF this \langle x \in interior I \rangle]
obtain e where e: "0 < e" "ball x e \subseteq interior I".
```

```
define U where "U = (\lambda w. (w - \xi) * g w)` T"
have "open U" by (metis oimT U_def)
moreover have "0 \in U"
using \langle \xi \in T \rangle by (auto simp: U_def intro: image_eqI [where x = \xi])
ultimately obtain \varepsilon where "\varepsilon > 0" and \varepsilon: "cball 0 \varepsilon \subseteq U"
using \langle open U \rangle open contains cball by blast
```

a neighbourhood around a point within an open set

many similar but not identical instances

Summations

have "real (Suc n) $*_{R} S (x + y)$ (Suc n) = $(x + y) * (\sum_{i \le n} S x i * S y (n - i))$ " by (metis Suc.hyps times S) also have "... = x * $(\sum_{i \le n} S_{x_i} * S_{y_i} (n - i)) + y * (\sum_{i \le n} S_{x_i} * S_{y_i} (n - i))$ " by (rule distrib right) also have "... = $(\sum_{i \le n} x * S x i * S y (n - i)) + (\sum_{i \le n} S x i * y * S y (n - i))$ " by (simp add: sum distrib left ac simps S comm) also have "... = $(\sum_{i \le n} x * S x i * S y (n - i)) + (\sum_{i \le n} S x i * (y * S y (n - i)))$ " by (simp add: ac simps) also have "... = $(\sum_{i \leq n}$ real (Suc i) $*_{R}$ (S x (Suc i) * S y (n - i))) + $(\sum_{i \le n} e^{i} \le n e^{-i}) *_{R} (S \times i * S \times (Suc n - i)))"$ by (simp add: times S Suc diff le) also have " $(\sum_{i\leq n}$. real (Suc i) $*_R$ (S x (Suc i) * S y (n - i))) = $(\sum_{i \leq Suc n}$. real i $*_R$ (S x i * S y (Suc n - i)))" by (subst sum.atMost Suc shift) simp also have " $(\sum i \le n$. real (Suc n - i) $*_R$ (S x i * S y (Suc n - i))) = $(\sum_{i \leq Suc n}, real (Suc n - i) *_R (S x i * S y (Suc n - i)))"$ by simp also have " $(\sum_{i \leq Suc n}$. real i $*_R$ (S x i * S y (Suc n - i))) + $(\sum_{i\leq Suc n}, real (Suc n - i) *_R (S x i * S y (Suc n - i)))$ = $(\sum_{i \leq Suc n}$ real $(Suc n) *_R (S x i * S y (Suc n - i)))"$ by (simp flip: sum.distrib scaleR add left of nat add) also have "... = real (Suc n) $*_R$ ($\sum i \leq Suc n \cdot S \times i * S \times j$ (Suc n - i))" by (simp only: scaleR right.sum) **finally show** "S (x + y) (Suc n) = $(\sum_{i \leq Suc n} S \times i * S \times i + S \times i)$ " by (simp del: sum.cl ivl Suc)

Painful, yet the steps of that proof are routine!

the distributive law (x + y)z = xz + yz

the distributive law $x \sum_{i \le n} a_n = \sum_{i \le n} x a_n$

the distributive law $\sum_{i \le n} (a_n + b_n) = \sum_{i \le n} a_n + \sum_{i \le n} b_n$

Shifting the index of summation and deleting a zero term

Change-of-variables is also common in such proofs

Can't at least some of these steps be learned from similar previous proofs?

So, an idea: link common "utility lemmas" to natural language concepts?

... then let users supply natural language hints?

This shouldn't require too much laborious lemma tagging: just a few dozen lemmas would cover many techniques

But for which sort of user?

- For mathematicians, who need help
 - to use the proof assistant
 - to navigate its library
 - to locate missing material in the mathematical literature and eventually to formalise it

- * Or verification engineers
 - who need mathematics for an application
 - but lack expert knowledge
 - and again need help finding relevant library items?

Conclusions

- the formalisation of mathematics, especially into structured proofs, requires a different approach to ML
 - *synthesis* of terms and assertions to *continue* (not necessarily complete) a proof
 - *linking* between informal proof ideas and their formal equivalents
 - brainstorming backed by the system's full knowledge