
AITP, Aussois 2020

Machine Learning and the Formalisation
Of Mathematics: Research Challenges
Lawrence C Paulson FRS

Supported by the ERC Advanced Grant ALEXANDRIA (Project GA 742178).

1. Introducing ALEXANDRIA

Mathematicians are fallible

Look at the footnotes on a single page
(118) of Jech's The Axiom of Choice

We aim to link people, formal
proofs and traditional mathematics

✤ Funded by the European Research Council (2017–22)

✤ Four postdoctoral researchers:

✤ one Isabelle engineer (Wenda Li)

✤ two professional mathematicians (Angeliki
Koutsoukou-Argyraki and Anthony Bordg)

✤ an expert on natural language/machine learning/
information retrieval (Yiannos Stathopoulos)

What have we been up to?

Working on natural
language search for

theorems in our libraries

Building libraries of
advanced mathematics

Writing verified
computer algebra tools

Aiming to support the
re-use of proof fragments

2. Structured Proofs

Tactic proofs: fit only for machines
let	IVT	=	prove(
		`!f	a	b	y.	a	<=	b	/\	
													(f(a)	<=	y	/\	y	<=	f(b))	/\	
													(!x.	a	<=	x	/\	x	<=	b	==>	f	contl	x)	
								==>	(?x.	a	<=	x	/\	x	<=	b	/\	(f(x)	=	y))`,	
		REPEAT	GEN_TAC	THEN	
		DISCH_THEN(CONJUNCTS_THEN2	ASSUME_TAC	
			(CONJUNCTS_THEN2	MP_TAC	STRIP_ASSUME_TAC))	THEN	
		CONV_TAC	CONTRAPOS_CONV	THEN	
		DISCH_THEN(ASSUME_TAC	o	CONV_RULE	NOT_EXISTS_CONV)	THEN	
		(MP_TAC	o	C	SPEC	BOLZANO_LEMMA)	
				`\(u,v).	a	<=	u	/\	u	<=	v	/\	v	<=	b	==>	~(f(u)	<=	y	/\	y	<=	f(v))`	THEN	
		CONV_TAC(ONCE_DEPTH_CONV	GEN_BETA_CONV)	THEN	
		W(C	SUBGOAL_THEN	(fun	t	->	REWRITE_TAC[t])	o	
		funpow	2	(fst	o	dest_imp)	o	snd)	THENL	
			[ALL_TAC;	
				DISCH_THEN(MP_TAC	o	SPECL	[`a:real`;	`b:real`])	THEN	
				ASM_REWRITE_TAC[REAL_LE_REFL]]	THEN	
		CONJ_TAC	THENL	
			[MAP_EVERY	X_GEN_TAC	[`u:real`;	`v:real`;	`w:real`]	THEN	
				CONV_TAC	CONTRAPOS_CONV	THEN	REWRITE_TAC[DE_MORGAN_THM;	NOT_IMP]	THEN	
				STRIP_TAC	THEN	ASM_REWRITE_TAC[]	THEN	
				MAP_EVERY	ASM_CASES_TAC	[`u	<=	v`;	`v	<=	w`]	THEN	ASM_REWRITE_TAC[]	THEN	
				DISJ_CASES_TAC(SPECL	[`y:real`;	`(f:real->real)	v`]	REAL_LE_TOTAL)	THEN	
				ASM_REWRITE_TAC[]	THENL	[DISJ1_TAC;	DISJ2_TAC]	THEN	
				MATCH_MP_TAC	REAL_LE_TRANS	THENL	
					[EXISTS_TAC	`w:real`;	EXISTS_TAC	`u:real`]	THEN	ASM_REWRITE_TAC[];	
				ALL_TAC]	THEN	
		X_GEN_TAC	`x:real`	THEN	ASM_CASES_TAC	`a	<=	x	/\	x	<=	b`	THENL	
			[ALL_TAC;	
				EXISTS_TAC	`&1`	THEN	REWRITE_TAC[REAL_LT_01]	THEN	
				MAP_EVERY	X_GEN_TAC	[`u:real`;	`v:real`]	THEN	
				REPEAT	STRIP_TAC	THEN	UNDISCH_TAC	`~(a	<=	x	/\	x	<=	b)`	THEN	
				REWRITE_TAC[]	THEN	CONJ_TAC	THEN	MATCH_MP_TAC	REAL_LE_TRANS	THENL	
					[EXISTS_TAC	`u:real`;	EXISTS_TAC	`v:real`]	THEN	
				ASM_REWRITE_TAC[]]	THEN	
					ASM_REWRITE_TAC[REAL_NOT_LT;	REAL_LE_NEG;	real_sub;	REAL_LE_RADD]]]);;	

UNDISCH_TAC	`!x.	~(a	<=	x	/\	x	<=	b	/\	(f(x)	=	(y:real)))`	THEN	
		DISCH_THEN(MP_TAC	o	SPEC	`x:real`)	THEN	ASM_REWRITE_TAC[]	THEN	DISCH_TAC	THEN	
		UNDISCH_TAC	`!x.	a	<=	x	/\	x	<=	b	==>	f	contl	x`	THEN	
		DISCH_THEN(fun	th	->	FIRST_ASSUM(MP_TAC	o	MATCH_MP	th))	THEN	
		REWRITE_TAC[contl;	LIM]	THEN	
		DISCH_THEN(MP_TAC	o	SPEC	`abs(y	-	f(x:real))`)	THEN	
		GEN_REWRITE_TAC	(funpow	2	LAND_CONV)	[GSYM	ABS_NZ]	THEN	
		REWRITE_TAC[REAL_SUB_0;	REAL_SUB_RZERO]	THEN	BETA_TAC	THEN	
		ASSUM_LIST(fun	thl	->	REWRITE_TAC(map	GSYM	thl))	THEN	
		DISCH_THEN(X_CHOOSE_THEN	`d:real`	STRIP_ASSUME_TAC)	THEN	
		EXISTS_TAC	`d:real`	THEN	ASM_REWRITE_TAC[]	THEN	
		MAP_EVERY	X_GEN_TAC	[`u:real`;	`v:real`]	THEN	
		REPEAT	STRIP_TAC	THEN	
		MP_TAC(SPECL	[`(f:real->real)	x`;	`y:real`]	REAL_LT_TOTAL)	THEN	
		ASM_REWRITE_TAC[]	THEN	DISCH_THEN	DISJ_CASES_TAC	THEN	
		FIRST_ASSUM(UNDISCH_TAC	o	check	is_forall	o	concl)	THENL	
			[DISCH_THEN(MP_TAC	o	SPEC	`v	-	x`)	THEN	REWRITE_TAC[NOT_IMP]	THEN	
				REPEAT	CONJ_TAC	THENL	
					[ASM_REWRITE_TAC[real_abs;	REAL_SUB_LE;	REAL_SUB_LT]	THEN	
						ASM_REWRITE_TAC[REAL_LT_LE]	THEN	DISCH_THEN	SUBST_ALL_TAC	THEN	
						UNDISCH_TAC	`f(v:real)	<	y`	THEN	ASM_REWRITE_TAC[GSYM	REAL_NOT_LE];	
						ASM_REWRITE_TAC[real_abs;	REAL_SUB_LE]	THEN	
						MATCH_MP_TAC	REAL_LET_TRANS	THEN	EXISTS_TAC	`v	-	u`	THEN	
						ASM_REWRITE_TAC[real_sub;	REAL_LE_LADD;	REAL_LE_NEG;	REAL_LE_RADD];	
						ONCE_REWRITE_TAC[REAL_ADD_SYM]	THEN	REWRITE_TAC[REAL_SUB_ADD]	THEN	
						REWRITE_TAC[REAL_NOT_LT;	real_abs;	REAL_SUB_LE]	THEN	
						SUBGOAL_THEN	`f(x:real)	<=	y`	ASSUME_TAC	THENL	
							[MATCH_MP_TAC	REAL_LT_IMP_LE	THEN	FIRST_ASSUM	ACCEPT_TAC;	ALL_TAC]	THEN	
						SUBGOAL_THEN	`f(x:real)	<=	f(v)`	ASSUME_TAC	THENL	
							[MATCH_MP_TAC	REAL_LE_TRANS	THEN	EXISTS_TAC	`y:real`;	ALL_TAC]	THEN	
						ASM_REWRITE_TAC[real_sub;	REAL_LE_RADD]];	
				DISCH_THEN(MP_TAC	o	SPEC	`u	-	x`)	THEN	REWRITE_TAC[NOT_IMP]	THEN

				REPEAT	CONJ_TAC	THENL	
					[ONCE_REWRITE_TAC[ABS_SUB]	THEN	
						ASM_REWRITE_TAC[real_abs;	REAL_SUB_LE;	REAL_SUB_LT]	THEN	
						ASM_REWRITE_TAC[REAL_LT_LE]	THEN	DISCH_THEN	SUBST_ALL_TAC	THEN	
						UNDISCH_TAC	`y	<	f(x:real)`	THEN	ASM_REWRITE_TAC[GSYM	REAL_NOT_LE];	
						ONCE_REWRITE_TAC[ABS_SUB]	THEN	ASM_REWRITE_TAC[real_abs;	REAL_SUB_LE]	THEN	
						MATCH_MP_TAC	REAL_LET_TRANS	THEN	EXISTS_TAC	`v	-	u`	THEN	
						ASM_REWRITE_TAC[real_sub;	REAL_LE_LADD;	REAL_LE_NEG;	REAL_LE_RADD];	
						ONCE_REWRITE_TAC[REAL_ADD_SYM]	THEN	REWRITE_TAC[REAL_SUB_ADD]	THEN	
						REWRITE_TAC[REAL_NOT_LT;	real_abs;	REAL_SUB_LE]	THEN	
						SUBGOAL_THEN	`f(u:real)	<	f(x)`	ASSUME_TAC	THENL	
							[MATCH_MP_TAC	REAL_LET_TRANS	THEN	EXISTS_TAC	`y:real`	THEN	
								ASM_REWRITE_TAC[];	ALL_TAC]	THEN	
						ASM_REWRITE_TAC[GSYM	REAL_NOT_LT]	THEN	
		

Where’s the intuition?
y

x

y = ƒ(x)

a b

y = u

c

ƒ(a)

ƒ(b)

By Kpengboy (Own work, based off Intermediatevaluetheorem.png), via Wikimedia Commons

Or again: a HOL Light tactic proof

let	SIMPLE_PATH_SHIFTPATH	=	prove	
	(`!g	a.	simple_path	g	/\	pathfinish	g	=	pathstart	g	/\	
									a	IN	interval[vec	0,vec	1]	
									==>	simple_path(shiftpath	a	g)`,	
		REPEAT	GEN_TAC	THEN	REWRITE_TAC[simple_path]	THEN	
		MATCH_MP_TAC(TAUT	
			`(a	/\	c	/\	d	==>	e)	/\	(b	/\	c	/\	d	==>	f)	
				==>		(a	/\	b)	/\	c	/\	d	==>	e	/\	f`)	THEN	
		CONJ_TAC	THENL	[MESON_TAC[PATH_SHIFTPATH];	ALL_TAC]	THEN	
		REWRITE_TAC[simple_path;	shiftpath;	IN_INTERVAL_1;	DROP_VEC;	
														DROP_ADD;	DROP_SUB]	THEN	
		REPEAT	GEN_TAC	THEN	DISCH_THEN(CONJUNCTS_THEN2	MP_TAC	ASSUME_TAC)	THEN	
		ONCE_REWRITE_TAC[TAUT	`a	/\	b	/\	c	==>	d	<=>	c	==>	a	/\	b	==>	d`]	THEN	
		STRIP_TAC	THEN	REPEAT	GEN_TAC	THEN	
		REPEAT(COND_CASES_TAC	THEN	ASM_REWRITE_TAC[])	THEN	
		DISCH_THEN(fun	th	->	FIRST_X_ASSUM(MP_TAC	o	C	MATCH_MP	th))	THEN	
		REPEAT(POP_ASSUM	MP_TAC)	THEN	
		REWRITE_TAC[DROP_ADD;	DROP_SUB;	DROP_VEC;	GSYM	DROP_EQ]	THEN	
		REAL_ARITH_TAC);;	

The same, as a structured proof

Proofs with gaps

It’s natural to propose a chain of
“stepping stones” from the
assumptions to conclusion

Users can fill these gaps
in any order

Structured proofs are necessary!

✤ Because formal proofs should make sense to users

✤ … reducing the need to trust our verification tools

✤ For reuse and eventual translation to other systems

✤ For maintenance (easily fix proofs that break due to changes to
definitions… or automation)

With some other systems,
users avoid automation for that reason!

3. Implications for ML

New possibilities for ML with
structured proofs

✤ Working locally within a large proof

✤ Looking for just the next step (not the whole proof)

✤ Proof by analogy

✤ Identifying idioms

Lots of data

✤ About 230K proof lines in Isabelle’s maths libraries:
Analysis, Complex Analysis, Number Theory, Algebra

✤ Nearly 2.6M proof lines in the Archive of Formal Proofs
(not all mathematics though)

✤ Hundreds of different authors: diverse styles and
topics

Lots of structured “chunks”

✤ Structured proof fragments contain explicit assertions
and context elements that could drive learning

✤ These might relate to natural mathematical steps

✤ Proving a function to be continuous

✤ Getting a ball around a point within an open set

✤ Covering a compact set with finitely many balls

Where does prior work fit in?

✤ TacticToe, etc., aim to prove theorems automatically
within the tactic paradigm, also predicting (just) the next
tactic

✤ Gauthier et al. work on statistical conjecturing attempts
term and formula synthesis

There’s already a trend towards incremental
proof construction (as opposed to full proofs)

It is essential to synthesise terms and formulas

Even tactics take arguments

Structured proofs mostly consist of explicit formulas

4. A Few Typical Proof Idioms

Inequality chains

typically by the triangle inequality

with simple algebraic manipulations

there are hundreds of examples

Simple topological steps

a neighbourhood around a point within an open set

many similar but not identical instances

Summations

Painful, yet the steps of that proof are routine!

the distributive law (x + y)z = xz + yz

the distributive law x∑i≤n an = ∑i≤n xan

the distributive law ∑i≤n (an + bn) = ∑i≤n an + ∑i≤n bn

Shifting the index of summation and deleting a zero term

Can’t at least some of these steps be
learned from similar previous proofs?

Change-of-variables is also common in such proofs

So, an idea: link common “utility lemmas”
to natural language concepts?

… then let users supply natural language hints?

This shouldn’t require too much laborious
lemma tagging: just a few dozen lemmas

would cover many techniques

But for which sort of user?

✤ For mathematicians, who need help

✤ to use the proof assistant

✤ to navigate its library

✤ to locate missing material in the mathematical
literature and eventually to formalise it

✤ Or verification engineers

✤ who need mathematics for an application

✤ but lack expert knowledge

✤ and again need help finding relevant library items?

Conclusions

✤ the formalisation of mathematics, especially into
structured proofs, requires a different approach to ML

✤ synthesis of terms and assertions to continue (not
necessarily complete) a proof

✤ linking between informal proof ideas and their
formal equivalents

✤ brainstorming backed by the system’s full knowledge

