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The Great Myth

Third paragraph of standard Deep Learning textbook:

In the early days of artificial intelligence, the field rapidly tackled
and solved problems that are intellectually difficult for human be-
ings but relatively straightforward for computers—problems that
can be described by a list of formal, mathematical rules. The
true challenge to artificial intelligence proved to be solving the
tasks that are easy for people to perform but hard for people to
describe formally—problems that we solve intuitively, that feel
automatic, like recognizing spoken words or faces in images.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning.
MIT press, 2016.
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The Sad Truth

Nowhere near human-level even on formally specified problems.

Computers are only superhuman in certain niches.

problems with simple algorithms (e.g. differentiation)
problems with limited structure (e.g. SAT)
problems in certain FO theories (e.g. EUF, LRA)
(others)

Such feats have masked the lack of progress on the general problem.

Can still be hard to produce machine-checkable proofs at all.

even for relatively obvious steps
after building libraries of abstractions/tactics
with real-time interaction and feedback
after decades of tool-building
in both mathematics and software verification
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Working Forwards

The norm in AR is to work forwards from existing methods.

better heuristics for existing search spaces
more efficient datastructures for existing algorithms
procedures for new theories that can slot into SMT solvers

Obvious pros:

can often push technologies much further than expected
again and again, cross thresholds that unlock important applications

But in the long run: too easy to ignore the ultimate brickwalls!

Existing paradigms will never get us to human-level reasoning.
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Working Backwards

Working backwards from a goal is not a panacea.

it may be wholly unclear how to make any progress at all
or: it may be impossible to even measure progress
or worse: it may just require a lot of one-off engineering

But: the right goal at the right time can be powerful.

can trigger the right questions
suggest promising new approaches
bring together siloed subfields
at best: can lead to revolutionary advances!

Claim: The IMO is the right goal at the right time.
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The International Mathematical Olympiad (IMO)

The most celebrated intellectual competition in the world.

Logistics:

every year, >100 countries train and filter and send 6 (HS) students.
two-day test, with 4.5 hours/3 problems each day
medals are percentile-based: top ≈8% win Gold

All material is elementary.

only high-school level mathematics required
algebra, number theory, combinatorics, geometry
solutions tend to be short and sweet
but: they are designed to require tremendous ingenuity

Extremely elite.
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Example Problems (Algebra)

Problem (IMO 2005 #3)

Let x , y , z be three positive reals such that xyz ≥ 1. Prove that

x5 − x2

x5 + y2 + z2
+

y5 − y2

x2 + y5 + z2
+

z5 − z2

x2 + y2 + z5
≥ 0
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Example Problems (Number Theory)

Problem (IMO 2003 #6)

Show that for each prime p, there exists a prime q such that np − p is
not divisible by q for any positive integer n.
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Example Problems (Combinatorics)

Problem (IMO 1995 #6)

Let p be an odd prime number. How many p-element subsets A of
{1, 2, . . . , 2p} are there, the sum of whose elements is divisible by p?

11 / 38



Example Problems (Geometry)

Problem (IMO 2006 #6)

Assign to each side b of a convex polygon P the maximum area of a
triangle that has b as a side and is contained in P. Show that the sum of
the areas assigned to the sides of P is at least twice the area of P.

12 / 38



The IMO Grand Challenge

The challenge: build an AI that can win a gold medal.

Formal-to-formal (F2F) variant of the IMO.
AI receives formal statements of problems
must produce machine-checkable proofs
(caveat: “determine” problems)

Other details:
system must be checksummed before the problems are released
no access to Internet
regular wall-clock time but no other computational limitations
proofs must be checkable in (say) 10 minutes
(roughly what it takes to check a human proof)

Committee:
Leonardo de Moura (MSR)
Kevin Buzzard (Imperial College London)
Reid Barton (University of Pittsburgh)
Percy Liang (Stanford University)
Sarah Loos (Apple)
Freek Wiedijk (University of Nijmegen)
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Why the IMO?

Extremely simple setting:

problems are formally specified (no vagueness or ambiguity)
solutions can be machine-checked (no need to imitate humans)
closed-world (limited background knowledge required)

Yet broad consensus:

incredibly hard, maybe even AI-complete
would be among all-time great achievements of CS
winning tech would revolutionize AI, AR, PL, mathematics

Ongoing supply of new problems.

long-standing, global, decentralized process

Well-defined notion of success: winning a gold medal.

Most importantly: we think we have a real chance!

but we need to work together as community
and we need to play the long game
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High-Level Strategy

1 Formalize historical problems in Lean.

grassroots effort in Mathlib community even before IMO-GC
many former winners are involved
most of the background math is already there

2 Compress proofs using very high level tactics.

the kinds of strategies that humans are taught
e.g. small-n, symmetry, extremes, invariants, pigeonhole
challenge: how to manifest these in software?

3 Train neural networks to guide search.

VHL tactics will be riddled with choice points
no way to hand-engineer all the low-level heuristics
challenge: how to learn heuristics from few examples?

4 Finish the job with armada of search.

16 / 38



High-Level Strategy

1 Formalize historical problems in Lean.

grassroots effort in Mathlib community even before IMO-GC
many former winners are involved
most of the background math is already there

2 Compress proofs using very high level tactics.

the kinds of strategies that humans are taught
e.g. small-n, symmetry, extremes, invariants, pigeonhole
challenge: how to manifest these in software?

3 Train neural networks to guide search.

VHL tactics will be riddled with choice points
no way to hand-engineer all the low-level heuristics
challenge: how to learn heuristics from few examples?

4 Finish the job with armada of search.

16 / 38



High-Level Strategy

1 Formalize historical problems in Lean.

grassroots effort in Mathlib community even before IMO-GC
many former winners are involved
most of the background math is already there

2 Compress proofs using very high level tactics.

the kinds of strategies that humans are taught
e.g. small-n, symmetry, extremes, invariants, pigeonhole
challenge: how to manifest these in software?

3 Train neural networks to guide search.

VHL tactics will be riddled with choice points
no way to hand-engineer all the low-level heuristics
challenge: how to learn heuristics from few examples?

4 Finish the job with armada of search.

16 / 38



High-Level Strategy

1 Formalize historical problems in Lean.

grassroots effort in Mathlib community even before IMO-GC
many former winners are involved
most of the background math is already there

2 Compress proofs using very high level tactics.

the kinds of strategies that humans are taught
e.g. small-n, symmetry, extremes, invariants, pigeonhole
challenge: how to manifest these in software?

3 Train neural networks to guide search.

VHL tactics will be riddled with choice points
no way to hand-engineer all the low-level heuristics
challenge: how to learn heuristics from few examples?

4 Finish the job with armada of search.

16 / 38



High-Level Strategy

1 Formalize historical problems in Lean.

grassroots effort in Mathlib community even before IMO-GC
many former winners are involved
most of the background math is already there

2 Compress proofs using very high level tactics.

the kinds of strategies that humans are taught
e.g. small-n, symmetry, extremes, invariants, pigeonhole
challenge: how to manifest these in software?

3 Train neural networks to guide search.

VHL tactics will be riddled with choice points
no way to hand-engineer all the low-level heuristics
challenge: how to learn heuristics from few examples?

4 Finish the job with armada of search.

16 / 38



Outline

Standard advice for talks: stick to the past.

Contra advice: rest of talk is preliminary roadmap.

potential solutions to the two main challenges
warning: ideas reasonably fleshed out but far from battle-tested

Two interrelated WIP ideas:

representing strategies with the search transformer
guiding search with the universal oracle

The real War Machine that makes these projects possible: Lean4.

similar logic as battle-tested by Mathlib
new in Lean4: real programming language, ridiculous performance
(no need to drop down to C++ for perf-critical tactics)
built by Leonardo de Moura (MSR) and Sebastian Ullrich (KIT)
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Tactics, Not Agents

Standard agent/environment model for ITP:
(Theorems,Goal,Action)→ [Goal]
loop:

look at theorems, current goal, possible actions
select action, apply it
add resulting subgoals to goal stack

Appealing, but has limitations.
binary distinction between choices and black-box tactics
in much of formal math, the line is very blurred

Tactics are computer programs, not atomic actions.
keep their own kind of state (not necessarily just list of goals)
may make internal heuristic decisions
may call other tactics recursively
compositionality is where their power comes from!

Roadmap I: New agent/environment model

Write nondeterministic tactics with explicit choice points; agent’s job is
to execute these tactics, choosing which branches to go down at each
choice point.
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Nondeterministic Tactics

Status quo: regular tactics hardcode choice-point ordering.
f <|> g means “try f , if it fails, try g”
search space and search decisions intertwined

Our approach: reify the choice points.
factor out heuristics from search space
allow multiple, modular ways of guiding tactics

Silly example (more details to come):

blindRewrite : NondeterministicTactic := do

h <- choose env.theorems

execute (rewrite h)

breadthFirstSearch blindRewrite

depthFirstSearch blindRewrite

Open question: how best to encode IMO strategies?
extreme 1: detailed proof scripts (no search)
extreme 2: choose bits of proof (insane search)
obviously: we want something in the middle
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Example: Olympiad Inequalities

Problem (JBMO 2002)

Let a, b, c > 0 and prove that:

2(
∑
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) ≥ 27

Calculational proof:
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3

(cancel)

= 27 (eval)

High-level proof: make LHS look like LHS of Holder’s, then apply it.

21 / 38



Example: Olympiad Inequalities

Problem (JBMO 2002)

Let a, b, c > 0 and prove that:

2(
∑
cyc

a)2(
∑
cyc

1

a(a+ b)
) ≥ 27

Calculational proof:

2(
∑
cyc

a)2(
∑
cyc

1

a(a + b)
)

=

∑
cyc

a

∑
cyc

2a

∑
cyc

1

a(a + b)

 (group)

=

∑
cyc

a

∑
cyc

a + b

∑
cyc

1

a(a + b)

 (cycle)

≥

∑
cyc

(
a(a + b)

a(a + b)

)3

(Holder)

=

∑
cyc

1

3

(cancel)

= 27 (eval)

High-level proof: make LHS look like LHS of Holder’s, then apply it.

21 / 38



Example: Olympiad Inequalities

Problem (JBMO 2002)

Let a, b, c > 0 and prove that:

2(
∑
cyc

a)2(
∑
cyc

1

a(a+ b)
) ≥ 27

Calculational proof:

2(
∑
cyc

a)2(
∑
cyc

1

a(a + b)
)

=

∑
cyc

a

∑
cyc

2a

∑
cyc

1

a(a + b)

 (group)

=

∑
cyc

a

∑
cyc

a + b

∑
cyc

1

a(a + b)

 (cycle)

≥

∑
cyc

(
a(a + b)

a(a + b)

)3

(Holder)

=

∑
cyc

1

3

(cancel)

= 27 (eval)

High-level proof: make LHS look like LHS of Holder’s, then apply it.

21 / 38



Example: Olympiad Inequalities

Problem (JBMO 2002)

Let a, b, c > 0 and prove that:

2(
∑
cyc

a)2(
∑
cyc

1

a(a+ b)
) ≥ 27

Calculational proof:

2(
∑
cyc

a)2(
∑
cyc

1

a(a + b)
)

=

∑
cyc

a

∑
cyc

2a

∑
cyc

1

a(a + b)

 (group)

=

∑
cyc

a

∑
cyc

a + b

∑
cyc

1

a(a + b)

 (cycle)

≥

∑
cyc

(
a(a + b)

a(a + b)

)3

(Holder)

=

∑
cyc

1

3

(cancel)

= 27 (eval)

High-level proof: make LHS look like LHS of Holder’s, then apply it.
21 / 38



Example: Olympiad Inequalities

Easy to implement nondeterministic strategy that can prove it:

abstractProveJBMO2002 := do

thm <- choose standardDozen

makeLookLike (getLHS goal) (getLHS thm)

apply thm

finish

May be hard to specify:

which theorem to try next?
how to makeLookLike one term into another?

But, simple script already extremely useful!

makeLookLike gets a specification/goal
can use target to prune search space dramatically

Easy to relax proof further:

getLHS goal → choose (subterms goal)

apply → rewrite

finish → simplify, recurse
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Example: Geometry

IMO 2018 Problem 1:

Most Geometry proofs require introducing auxiliary constructions.

e.g. midpoints, feet, intersections, reflections, completions, etc.
large (indeed, infinite) set of possibilities

(Start of human proof) Let M and N be the arc-midpoints of AB
and AC respectively. It suffices to show that FG‖MN and DE‖MN.

Ho, what magic?

how do you know to try M and N?
what is the abstract strategy?

23 / 38
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Example: Geometry

Answer: look at the diagram!

Simple nondeterministic strategy:

abstractProveGeo := do
thm <- choose geoTheorems
apply thm
when (hasVariables goal) (do points <- chooseFromModel; instantiate points)
abstractProveGeo

No idea how to specify:

which theorem to try next?
which of the promising constructions to try next?

But simple script is extremely useful!

candidate constructions pruned by several OOM
no loss of power (as long as model is correct)
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Decisions, Decisions

The best tactics will still induce intractable search spaces.

we can only introspect so much
we can only provide so much structure before we dull the system

Can we leverage learning to navigate these spaces?

Hypothesis: deep learning has failed to advance AR because:

search spaces too low-level
wrong agent models
and obviously: not enough data

Roadmap II: Extreme Genericity

Embed search problems generically so that a single neural network can
pool data across all conceivable search problems and provide zero-shot
guidance.

25 / 38
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Pooling Data

Want to pool training data across many domains:

IMO problems
Mathlib proper
other formal math libraries (e.g. Metamath)
computer algebra (e.g. integrals, sums)
synthesis problems (e.g. ARC)
puzzles (e.g. Sudoku)
verification problems?
code optimizers?
query planners?
board games?
...
(endless possibilities)
(empirical/economic question where to draw the line)

To pool: search problems must be made commensurable.
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Generic Search Problems

New abstraction SearchT for representing arbitrary search problems.

Basic idea: a search problem is an arbitrary program that either:

fails
successfully returns a value
returns “choice point”

Choice point:

user-specified data deemed relevant for decision
list of possible choices

Choice:

some data summarizing the choice
another arbitrary search problem, i.e. a continuation

Can “run” a SearchT program in variety of generic ways.

depth-first search
breadth-first search
later: heuristic search
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Example: ARC

High-level solution:

split input into shapes by color and connectivity

find the special shape that touches a grey cell

guess the smallest square containing the special shape
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Example: ARC

SearchT program that can solve both:

def abstactSolveSpecial = do
inThings <- splitInputIntoThings
(specialInput, in2outFn) <- synthAlignSpecialThingFn inThings
pickSpecialFn <- synthPickSpecialFn specialInput inThings
guess (in2outFn (pickSpecialFn inThings.test))

A handful of SearchT tactics like this placed us in top 2%.

on ARC Kaggle competition
with no heuristics, only blind iterative-deepening
joint with: Ryan Krueger (UMich) and Jesse Michael Han (UPitt)

Takeaway: programs + nondeterminism let you write:

convenient, abstract, compositional strategies
that solve superficially diverse problems

Note: we needed to be conservative to keep search tractable.

could have written much more flexible tactics with good heuristics
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Generic Heuristics

Recall a choice point consists of:

user-specificed data deemed relevant for decision
list of possible choices, each with summary data and a continuation

But: the datatypes involved may be arbitrary.

inequalities: regular tactic state
Geometry: E-graph, sets for lines/circles, diagram
ARC: input and output grids

In all three examples, subproblems see different data.

inequalities: makeLookLike sees the target pattern
Geometry: chooseFromModel sees desired property
ARC: synthPickSpecialFn sees labels, i.e. the special things

Q: how to share statistical strength across all problems?
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Compositional Embeddings

First thought: emit tokens and use single transformer.

appealingly simple!
but: näıve, bad asymptotics, limited inductive bias

Proposal: compositional embeddings.

List<α> as (say) LSTM on embeddings of αs
Vector<α> as (say) transformer of αs
Set<α> as AC-invariant repr of αs
Grid<α> as CNN over αs
custom Term type as GNN
share e.g. Vector parameters across all vectors
(call this Phase I of the embedding)

Embed the continuations as the program Exprs.

Phase II: after embedding all datatypes to same space:

run single generic model (e.g. transformer)
then at end, output floats giving scores to choices
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Universal Oracle

Now: we can embed arbitrary types into one space.

language features (e.g. typeclasses) make most plumbing transparent

This lets us build:

Universal Oracle

A trainable procedure that can map any choice point with n choices
encountered by any SearchT program into a vector of n floats,
representing heuristic preferences among the choices.

And finally we can implement:

Self-Improving Universal Search

A generic way of executing a SearchT program that queries the universal
oracle at every choice point and trains the oracle based on new data
arising from the search.
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Beyond the IMO

Hypothesis:

If we can win the IMO, we could use a similar methodology to
automate any class of problems that

are formally specified, and
that very smart humans can be trained to solve reliably.

Does not include:

personal assistants (no formal spec)
solving Clay Millenium Problems (not trainable)

But it is still is a huge class of important problems.
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Beyond the IMO

Includes most proofs in CS and Stats research.

convergence rates
regret/generalization bounds
asymptotic time/space arguments

Includes many subproblems that appear in “real” mathematics.

(many IMO problems arise this way)

Includes big chunk of software verification!
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Long-Term Aspiration

High-performance synthesis from extremely high-level code.

Universal finding: can be very difficult to write “good” specs.

But: it is always easier to write slow code than fast code!

(Mostly) Well-defined and teachable to smart people:

start with: extremely high-level, näıve code
perform all sorts of high-, medium-, and low-level optimizations
end with: correct, super-high-performance code
(+ additional desiderata)

If we can win the IMO, perhaps we can automate this too.
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perform all sorts of high-, medium-, and low-level optimizations
end with: correct, super-high-performance code
(+ additional desiderata)

If we can win the IMO, perhaps we can automate this too.

37 / 38



Long-Term Aspiration

High-performance synthesis from extremely high-level code.

Universal finding: can be very difficult to write “good” specs.

But: it is always easier to write slow code than fast code!

(Mostly) Well-defined and teachable to smart people:

start with: extremely high-level, näıve code
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Thank You

Lean4: https://github.com/leanprover/lean4

IMO Grand Challenge website:
https://imo-grand-challenge.github.io/

Zulip channel: https://leanprover.zulipchat.com/
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