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Abstract

We describe a heuristic approach to identifying splittings in some lattices of subvarieties using

computer-assisted methods, in particular McCune’s Prover9/Mace4. This approach shows promise

to facilitate the analysis of subvariety lattices for many classes of algebraic structures, in particular in

situations where the large size of the algebras involved in the splittings make human-executed proofs

infeasible.

Equational reasoning can often be fruitfully analyzed from a semantic perspective by con-
sidering varieties—i.e., classes of algebraic structures satisfying some set of equations, or equiv-
alently that are closed under taking subalgebras, direct products, and homomorphic images.
Indeed, given an equational theory E and the the variety V of algebras modeling E , there is
a bijective correspondence between equational extensions of E and varieties contained in V.
Ordered under inclusion, the varieties contained in V form a complete lattice. This subvariety
lattice of V completely encodes equational inference in the presence of E due to the previously
mentioned correspondence, and thus understanding the structure of the subvariety lattice is
crucial. Because a complete description of the subvariety lattice of a given variety V is usually
not possible, its structure is often illuminated in terms of its splittings. These consists of pairs
(W1,W2) of subvarieties of V such that for each subvariety W of V, W ⊆ W1 if and only if
W2 6⊆ W. The splittings of a subvariety lattice provide ways of partitioning it, and have been
studied extensively both in general (see, e.g., [1]) and for certain important varieties of algebras
(see, e.g., [4]).

This work presents a case study in identifying such splittings using a computer-assisted
approach. Our case study illustrates a heuristic method of finding splittings in suitably-chosen
subvariety lattices, and relies on a human-guided computer search. This approach facilitates
the understanding of subvariety lattices in situations where human-executed approaches are
rendered infeasible by the size of the structures involved, necessitating the use of computational
resources. In particular, we execute our heuristic approach using McCune’s Prover9/Mace4
[6] to identify some important splittings in the subvariety lattice of involutive lattices. The latter
comprise a class of lattice-ordered algebraic structures that contain, inter alia, ortholattices and
Boolean algebras. We focus on the Kleene identity

x ∧ ¬x ≤ y ∨ ¬y, (K)

which plays an extremely important role in the theory of distributive involutive lattices (see,
e.g., [5, 7, 2, 3]). We characterize the failure of (K) in arbitrary (not necessarily distributive)
involutive lattices by the presence of six forbidden configurations Fi, i ∈ {4, 5, 6, 8, 10, 12}.
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These forbidden configurations are found by guided use of Mace4 to construct countermodels
witnessing each manner in which (K) may fail. First, Mace4 is asked to produce small counter-
models witnessing the failure of (K). After appropriate candidates for forbidden configurations
are identified, we scrutinize these for salient features (such as the presence of an involution fixed
point, distributivity, or special equations satisfied by generators). This yields a set of conditions
ΣF, which we conjecture guarantees the presence of the candidate forbidden configuration F as
a subalgebra in any involutive lattice L refuting (K) and satisfying ΣF. We then query Mace4
for countermodels of (K) that refute some conditions in ΣF. This process is then iterated.

Although there is no reason a priori why this process must terminate in general, for in-
volutive lattices we obtain six involutive lattices Fi, i ∈ {4, 5, 6, 8, 10, 12}, together with six
jointly-exhaustive sets of conditions Σi, i ∈ {4, 5, 6, 8, 10, 12} (where i identifies the cardinality
of the involutive lattice Fi). In order to prove that these forbidden configurations suffice to
characterize the failure of (K), for each i we examine countermodels L of (K) containing Fi in
order to understand generators of Fi in L. Specifically, given an involutive lattice L containing
Fi and a pair of elements a, b ∈ L witnessing the failure of (K), we identify term functions in
the language of involutive lattices that, when given a, b as inputs, produce generators for Fi as
a subalgebra of L.

Once candidate terms of the above kind are identified, we use Prover9 to derive machine
proofs that the subalgebras generated by these terms are isomorphic to the appropriate forbid-
den configuration Fi. It follows from [5] that the involutive lattice F4 generates the variety of
distributive involutive lattices. We further show that for each i ∈ {5, 6, 8, 10, 12}, the variety
generated by Fi contains F4. This produces the following splitting result.

Theorem 1. Let V be a variety of involutive lattices. Then one of the following holds.

1. V is contained in the variety of involutive lattices satisfying (K).

2. V contains all distributive involutive lattices.

We expect that the heuristic approach outlined here will be successful in the study of many
subvariety lattices, in particular for varieties consisting of lattice-ordered algebraic structures.
In addition to discussing these paths forward, we discuss some limitations of this heuristic
approach, as well as potential avenues for further automation. In particular, we discuss the
possibility of using techniques from machine learning to automate the production of the condi-
tions ΣF, as well as the term functions that produce generators of forbidden subalgebras.
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