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Abstract

Automatic theorem provers typically offer a wide variety of parameters to control their
search strategy. However, the strategy range is vast, and a suitable strategy for a given
input problem hard to predict.

Here we sketch an experiment analyzing a large data set, obtained by running all 801
of Vampire’s CASC mode 2018 strategies on first-order problems in TPTP: (1) We build
random forest regression models predicting strategy performance, using different feature
sets to investigate feature importance. (2) Each strategy is defined by a set of parameter
values. We investigate the correlation between problem features and successful parameter
values to work towards learning how to construct suitable strategies for a given problem.
(3) We analyze correlations between problem features and the success of tools run in CASC.

1 Strategy Prediction

Data set. Vampire [6] was run for 60 s on all 17 574 FOL problems in TPTP library [9]
(version 7.2.0) using all the 801 strategies used in CASC-27 (a total running time of ∼16 years
on a single core).

Problem features. We use the problem properties specified in the TPTP files (e.g., number
of axioms, terms, variables, etc) and a property set determined by Vampire (e.g., has exten-
sionality, linear integer or group problem). Moreover we experimented with the three TPTP
pseudo-features: domain, rating, and source,1 where “source” refers to a token combining the
author and year of the TPTP submission, like ‘Sla93’. In addition, three hand-crafted features
were used which estimate the number of unifiable positive and negative literals and the number
of terms matching and unifying with (non-variable) equation sides. In total, we obtained 98
features in this way.2

Regression models. For each of the 801 strategies (set S), we built a random forest regressor
to predict the runtime on a problem using our feature set [8]. Hyperparameters were determined
by a grid search. We built rating-balanced test and training sets (ratio 1:4), and trained all
801 regressors on the latter. (If a strategy did not solve a problem, a timeout penalty of 300 s
was assigned.) In the test phase, for every problem in the test set, the strategy with the lowest
predicted run time was recommended, and we counted how many problems can be solved by
the recommended strategy. The lessons we learned from that include the following:
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1One can question whether these are “legitimate” features as they are not obtained from the problem itself

viewed as a logical formula.
2For the feature list and all further details see http://profs.scienze.univr.it/winkler/learn_strat/.
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• Tell me the source, I tell you the strategy. When predicting a strategy in S from a single
feature, the source works best: 2342 of 3515 test problems can be solved (2180 from
the number of terms, 2241 from the domain, 2166 from the rating). From all features,
successful predictions can be made for 2583 problems, without TPTP features 2548.

• Interaction matters. All three handcrafted features about unifiable and matching terms
are in the top 10 of the most important features. In total, they contribute 11.6%. Other
top 10 features are numbers of terms (6.2%), variables (4.3%), atoms (3.8%), connectives
(3.6%), functions (3.5%), unit clauses (3%), and constants (3%) (without TPTP features).
If included, rating is the most important feature (23%) and source is in the top 10, too.

• Regression quality 6= prediction power. The coefficient of determination (r2-value) is a
common measure for the amount of variance explained by a regression model. When using
all features it amounts to r2 = 0.71, for source only r2 = 0.28, for rating only r2 = 0.41.
Obviously, the rating can correctly predict many timeouts, but as the numbers of solved
problems above show, not so many suitable solving strategies.

2 Correlation

In Section 1 we tried to predict a strategy from the fixed set S. Next we investigate correlations
between problem features and strategy components (i.e., Vampire options). To that end, we
clustered problems according to features and compared the probability that a problem from
some cluster C can be solved by a strategy with option o set to a particular value v to the
probability that (1) an arbitrary strategy solves a problem from C, and (2) a strategy with
o = v solves a problem on average. For example, on EPR problems, age-weight ratio (-awr;
used for controlling clause selection) values of 1:50, 1:64, 1:128 are 11.0%, 8.6%, 9.6% better
than strategies are on EPR on average, and 15.0%, 16.8%, 18.0% better than these option values
usually are. As another example, for the sources ‘Sla93’, ‘WM89’, ‘Bau99’, ‘Sta09’, problems
are 60% more likely to be solved by a strategy with the finite model builder (-sa fmb; which
replaces a saturation algorithm). We add two more general observations (for more examples
and complete data see the website):

• The strongest correlations appear with sources. Even for sources which occur in at least 20
problems, we found 389 correlations where problems from a particular source are solved
at least 30% more likely with a certain option.

• Correlations identify fragile options. For options like nwc3 and awr, often a certain range
is beneficial (as for EPR above), but others are fragile, i.e. only one value works.

• EPR and UEQ show correlations for many option values.

We also correlated feature properties with the success rate of different CASC tools, using
TPTP2T data to check which tool is (a) the most appropriate for a cluster, and (b) more
powerful on a cluster than on TPTP in general. For (a), though Vampire is almost always the
best choice, we found some clusters where this is not the case. For instance, in the presence of
reals CVC4 1.7 is superior, with list axioms Leo-III 1.3 and Isabelle 2016 prevail, and for prob-
lems with source ‘Hoe08’ or ‘Sta08’, versions of E solve most problems. For (b), we discovered
many cases of “overperformance” of a tool on a certain problem cluster. For instance on EPR,
iProver, Z3, and Zipperposition win by overperformance, but Vampire solves more problems.

3The non-goal-weight coefficient: it penalises clauses not derived from the conjecture by artificially increasing
their weight (by multiplying it by a given coefficient) before it is used for clause selection.
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Related Work. Given the numerous parameters offered by state-of-the-art theorem provers
and the hence vast number of search strategies, automatic tuning by machine learning techniques
is a natural approach. Early work in this direction was done for the equational theorem prover
Discount [2, 3] using a syntactic feature set and a nearest-neighbor strategy. A similar approach
was also pursued for E using features related to symbol counts, evaluated both a priori and after
some proof steps [1]. Similar features, together with the TPTP properties, were exploited by
the strategy tuning framework MaLeS [7]. The strategy design tools BliStr and BliStrTune [5]
predict strategies for E and were evaluated on the Mizar Mathematical Library. Related work
for iProver was also presented at AITP 2019 [4].

Conclusion. In next steps, we want to repeat our experiments with a more extensive strategy
set, take the solving time for correlations into account, and play with dimensionality reduction.
In the future, we plan to work on predicting good schedules [10] for a given problem, which is
a potentially very rewarding endeavour but has received relatively little attention so far.
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