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1 Project Overview
Modern saturation-based Automated Theorem Provers (ATPs) such as E [13] or Vampire [4]
rely on the superposition calculus [7] for their underlying inference system. Superposition is
built around the paramodulation inference [12] crucially constrained by a simplification ordering
on terms, which comes as a parameter of the calculus. Each of the two classes of simplification
orderings used in practice, i.e., the Knuth-Bendix Ordering (KBO) [3] and the Lexicographic
Path Ordering (LPO) [2], is mainly determined by a pair of symbol precedences—permutations
on the predicate and function symbols, respectively.1 Note that since a symbol precedence only
makes sense in the context of a particular problem signature, it is genuinely problem-specific.

The choice of the precedences and thus of the simplification ordering may have a significant
impact on how long it takes to solve a given problem. In a well-known example, prioritizing
predicates introduced during the Tseitin transformation of an input formula [16] exposes the
corresponding literals to resolution inference during early stages of the proof search, with the ef-
fect of essentially undoing the transformation and thus threatening with an exponential blow-up
[11]. ATPs typically offer a few heuristics for generating the symbol precedences. For example,
the successful invfreq heuristic in E orders the symbols by the number of occurrences in the
input problem, prioritizing symbols that occur the least often for early inferences. Experiments
with random precedences have shown that the existing heuristics often fail to come close to the
optimum precedence [10], revealing there is a large potential for further improvements.

The ultimate goal of this project is to implement a system that, when presented with a First-
Order Logic (FOL) problem, proposes symbol precedences that will likely lead to solving the
problem quickly. We plan to use the techniques of supervised learning and extract such theorem-
proving knowledge from successful (and unsuccessful) runs of the Vampire theorem prover
when run over a variety of FOL problems equipped by randomly sampled symbol precedences.
Our basic assumption is that there are abstract properties of signature symbols2 which the
learned model can utilize to determine their placement in good (from the perspective of the
proving process) precedences. Moreover, we assume that by succeeding to solve already solvable
problems fast, the learned knowledge will generalize to solving problems previously out of
reach. This general assumption is shared with other projects for learning good theorem proving
strategies from previous experience, such as the MaLeS system [6].

Note that while the domain of each precedence depends on the problem signature, we still
aim to generalize the model across a wide range of FOL problems, learning theorem proving
knowledge in a signature agnostic way. To this aim we are planning to use Graph Neural
Networks (GNNs) [18] to extract abstract representations (feature embeddings) of the symbols
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while learning to distinguish good precedences from bad ones. The viability of using GNNs for
learning in related theorem proving tasks has recently been established [17, 14, 9, 8] and it has
been shown that a lot of problem structure can be captured in a way that does not hard-code
symbol names into the model. This makes GNNs an ideal target architecture also for our work.

2 Problem-wise Predicate Precedence Learning

While keeping finer details of the overall architecture open for now, we start by focusing on
learning good precedences for each problem in isolation. This preliminary task allows us to
establish how much “signal to learn from” we can expect to be available. Moreover, learning
from permutations presents already several interesting challenges to deal with. For one, there
is a priori no obvious way how to characterise a permutation by real-valued features to serve
as inputs for a learning algorithm, or how to do it in a way which does not presuppose a fixed
domain size. Moreover, even with a regression model ready to predict the prover’s performance
under a particular precedence Π, we still need solve the task of finding the ideally optimal
precedence Π∗ according to this model.

2.1 Initial Experiment

We based our initial experiment on the assumption that each pair of predicates (p1, p2) con-
tributes to the performance a precedence that orders p1 before p2 independently of the ordering
of the other predicates in the precedence. This is in accord with how a typical human designed
heuristics would be justified: by declaring that a certain class of symbols should be larger or
smaller than others. Under this assumption we can aggregate the values from all of the up
to n! precedence-wise performance measurements (where n is the number of predicates in the
problem under consideration) into n(n− 1) pairwise predicate preference values.

In our first implementation, we choose the preference value of a pair of predicates (p1, p2)
to be an empirical estimate of the expected number of saturation loop iterations of a successful
Vampire run that orders p1 before p2. We obtain this value by running Vampire with 1000
uniformly random predicate precedences for each of the training problems, attributing a high
constant value to the runs that time out. The number of saturation loop iterations in a successful
run is generally a good measure of the quality of a precedence, because if we reduce the number
of saturation loop iterations for a wide variety of problems, we are likely to solve previously
unsolved problems.

Once we have access to good pairwise preference values pref (p1, p2), we proceed to construct
a predicate precedence Π∗ that approximately optimizes the cumulative preference value using
a greedy algorithm proposed by Cohen et al. [1]. Essentially, the algorithm always looks for a
predicate p such that

∑
p′∈Remaining pref (p, p′) is the smallest/largest and moves such p from

Remaining to the next position in the (from left to right) constructed precedence.
To summarize the initial experiment design, we evaluate the feasibility of precedence learning

from pairwise preference values, trying to answer the following question:

To what extent is it possible to construct a good predicate precedence if we know a
good preference value for each pair of predicate symbols?

In the talk, we will present encouraging experimental results showing that when using the av-
eraged pairwise preference values the greedy algorithm from Cohen et al. [1] reaches or surpasses
the performance of Vampire’s equivalent of E’s invfreq heuristic on 85 out of 113 problems
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from TPTP [15] (we selected problems that exhibit an especially high variation in number of
saturation loop iterations), reducing the number of saturation loop iterations by an average
(geometric mean) factor of 0.47.
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