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Abstract

Extracting features from problem files is a prerequisite in learning systems for automatic
theorem proving, notably for strategy creation and scheduling. Such manually-designed
features are crucial in enabling machine learning algorithms to help solve otherwise-difficult
problems. We propose a neural autoencoder approach for problem sets (allowing auto-
matic feature extraction), and aim to show that the learned features are complementary
to human-designed problem features. Learned features may also shed some light on the
structure and behaviour of problem sets frequently-used in the community. The TPTP
problem set is used as a well-known running example.

1 Background

Given a problem p in a set P, many machine-learning techniques and existing applications
require n real-valued features supplied by a feature extraction mapping f : P — R". Learn-
ing to predict good prover options (“strategies”) is one example of such a system. Previous
approaches have often utilised manual feature engineering [2], but this is labour-intensive,
and it is not clear in general which features are useful for a given task. Autoencoders [4]
learn to reconstruct the input they are given, but must pass data through a “bottleneck”
layer which is typically smaller than the input, thereby learning a compressed representa-
tion at the bottleneck. Representing the input/output problem set in our application —
collections of first-order formulae — is non-trivial, but recent advances in neural network
techniques make this more tractable. In this work we use a directed-graph representation
of formulae [7], along with graph neural network techniques [1] for encoder and decoder
networks.
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Figure 1: Information flow in the autoencoder. Each problem node receives its own feature
vector based on its local formula graph P, and other nodes are then discarded. This vector is
then used to try and recover the original information in the reconstructed graph P.
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2 Task

We represent a problem set P as a directed graph. A subset of the nodes in the directed
graph are “problem nodes”, representing a single problem with constituent axioms and con-
jecture as immediate children — in TPTP [5] this is a natural construction. An encoder
network is allowed to produce a feature vector in R™ for each node, then all nodes except
the problem nodes are discarded in a bottleneck, after which a decoder network attempts
to recreate the input graph’s node data. A graphical representation of this approach is
shown in Figure 1. The level of accuracy in reconstruction and the degree of compression
achieved is a useful test of network representation, while also providing a means of pro-
ducing learned feature vectors from problems in an end-to-end fashion. This transductive
task is also interesting from a machine-learning perspective: it is both a node-embedding
and autoencoding task. A moderately-deep variational autoencoder model produces re-
construction results significantly better than chance on the first-order problems of TPTP.

3 Future Work

While an obvious next step is to experiment with better neural encoder/decoder pairs,
there are many directions for future work. We aim to investigate and present:

1. The effects of different representations and architectures on the performance and on
the learned embedding.

2. Conclusions from and visualisations of the learned embedding. Techniques such as
t-SNE [3] are expected to be helpful here.

3. Performance of the learned representation on tasks such as strategy scheduling. Are
the learned features complementary to existing designed features?

4. Transfer learning: do learned encoders/decoders generalise well to new problem sets?
If not, how much training is needed to re-specialise?

5. Comparison of TPTP and other datasets, such as MPTP [6], when viewed under the
lens of this new tool.
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