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Abstract

We propose a method for training of clause deletion heuristics in DPLL-based solvers using
Reinforcement Learning. We have implemented it as part of a software framework SAT-Gym

which we plan to release as an OpenAI Gym compatible environment. We present experiments
and preliminary results for the clause deletion heuristic in Glucose.

1 Introduction

Solvers for difficult combinatorial problems such as SAT, QBF, etc., rely on heuristics that are used
in many different phases of their computation. Years of human experience and experimentation have
lead to very effective heuristics for many different types of solvers. However, these achievements
have been quite painstaking and leave open the question of whether other heuristics could yield
better performance. The focus of this work, similar to [5, 6], is to use Machine Learning (ML) to
automatically learn those heuristics. In particular, there has been recent interest in framing the
learning process in a Reinforcement Learning (RL) setting [4, 3, 7]. We argue that this is a desirable
design choice for several reasons: First, a solver is a dynamic process and changes to the heuristics
directly affect the landscape of the future observations. Hence a model that is trained offline in
a supervised manner might fail to capture this inherently non-stationary behaviour; Second, an
RL-based approach, allows for training the heuristic directly towards optimizing the desired metric
(e.g., number of decisions, running time, etc.). This is again in contrast to the supervised setting in
which one often needs to substitute that desired metric with a surrogate labeling mechanism. Under
these considerations, we propose a RL architecture to learn a clause deletion policy to improve the
running time of SAT solvers.

Why Clause Deletion? In order to use Deep Neural Networks (NN) in the loop of a modern
solver we need to address the time-scale mismatch: In the time it takes the NN to make one
informed decision, the solver can take thousands. Consequently, we need to make less frequent
queries to the NN oracle for it to be feasible. Clause deletion in Conflict-Driven Clause Learning
(CDCL) SAT solvers naturally fits this criteria as it is executed much less frequently than other
heuristics.

Clause deletion is an integral component of CDCL solvers, as the solver accumulates a large
number of clauses and as a result starts to slow down. Deleting the learned clauses periodically has
proven to be effective in speeding up the process.
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2 Clause Deletion in SAT-Gym

In (episodic) RL, we consider an agent that interacts with an environment over finite discrete time
steps. The agent gets observations from the environment, takes actions, and accumulates reward.
In our setting the environment is Glucose, a time step is a garbage collection, and the agent takes
the decision of which learned clause to keep.

Observation: The observation is a set of solver state features that includes: 1. The ratio of
learned to original clauses, 2. A histogram of the LBD scores of recently learned clauses along with
their average, 3. Moving averages of both the recent trail size and recent decision levels.

Action: We use a policy gradient algorithm that directly optimizes a stochastic policy, which at
each time step outputs a distribution over the set of actions. In each time step (garbage collection)
the agent has to decide for each clause out of N whether to keep or to drop it. A näıve imple-
mentation results in a discrete action space of size 2N , where N is on the order of 2000. In order
to overcome this curse of dimensionality we use the Literals Block Distance (LBD) [1] value of a
clause, which is the standard metric for the “usefulness of clauses” (clauses with lower LBD values
are more useful). We constrain our policy to output as action an integer LBD threshold, and delete
all clauses with LBD values above the threshold.

Reward: Our goal is to improve the running time of the SAT solver, however due to volatility
of CPU time, we count the number of “logical operations” op that the solver performs, as a more
stable and deterministic replacement. These logical operations consist of the number of times the
solver accesses the clauses clause during unit propagation. We have observed a high correlation
between the op and the wall-clock solving time of an instance, which makes op a viable surrogate.

Episodes are rolled until solved, or are aborted if they accumulate more than 109 logical opera-
tions. We define the reward of a successfully solved episode to be 200 − op× 10−7. The reward of
an aborted episode is set to 0.

3 Training

We provide an OpenAI Gym [2] compatible environment that includes a “solver framework” that
allows the user to replace different parts of a standard solver (Glucose in our case). The framework
currently supports learning of branching and clause deletion heuristics in SAT and 2QBF solvers.

For our dataset, we used the Cellular Automata benchmark which is part of SATCOMP-2018.
We chose this particular benchmark because it allowed us to generate a large dataset with tunable
difficulty level.

We have preliminary results indicating we can train a policy to improve its reward on 500
formulas from this dataset using our framework (Figure 1). We are actively working on improving
our feature set as well as more elaborate hyper-parameter optimization for our training in order to
achieve a viable heuristic that can improve the state of the art.
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Figure 1: The average episode reward of the agent on 500 formulas from Cellular Automata bench-
mark over the course of training.
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