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Abstract

Isomorphism is central to the structure of mathematics and has been
formalized in various ways within dependent type theory. All previous
treatments have done this by replacing quantification over sets with quan-
tification over groupoids of some form — categories in which every mor-
phism is an isomorphism. Quantification over sets is replaced by quantifi-
cation over standard groupoids in the groupoid model, by quantification
over infinity groupoid in homotopy type theory, and by quantification over
morphoids in the morphoid model. Our treatment in [6] is based on the
intuitive notion of sets as collections without internal structure. Quan-
tification over sets remains as quantification over sets. Isomorphism and
groupoid structure then emerge from simple but subtle syntactic restric-
tions on set-theoretic language. This approach more fully unifies the clas-
sical ZFC foundations with a rigorous treatments of isomorphism, symme-
try, canonicality, functors, and natural transformations. This is all done
without reference to category theory.

1 Introduction

Isomorphism is central to the structure of mathematics. Mathematics is orga-
nized around concepts such as graphs, groups, topological spaces and manifolds
each of which is associated with a notion of isomorphism. Each concept is asso-
ciated with a classification problem — can we enumerate the instances of a given
concept up to isomorphism. We also have the related notions of symmetry and
canonicality. There is no canonical point on a geometric circle — any point can
be mapped to any other point by rotating the circle. A rotation of the circle is
an isomorphism of the circle with itself — a symmetry or automorphism. Sim-
ilarly, there is no canonical basis for a finite dimensional vector space. For any
basis there is a symmetry (automorphism) of the vector space which moves the
basis to a different basis — a situation precisely analogous to a point on a circle.
Isomorphism is also central to understanding representation. A group can be
represented by a family of permutations. Different (non-isomorphic) families of
permutation can represent the same group (up to isomorphism).
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At first isomorphism seems simple. The notion of isomorphic graphs, and the
intuition that two isomorphic graphs are “the same”, seems intuitively clear
to essentially anyone who encounters the concept. Indeed, for a broad class of
concepts the notion of isomorphism is easily defined. More specifically we can
consider concepts defined by a carrier set of “points” plus predicates, relations
and functions providing structure on those points. A graph consists of a set
of nodes (points) plus an edge relation on the nodes. For concepts defined
by a carrier set plus structure, two instances are isomorphic if there exists a
bijection between their points which identifies their structure — which “carries”
the structure of one to the structure of the other. This notion of isomorphism
is easily formalized for concepts defined as the models of a given (higher order)
signature where a signature is a set of predicate symbols, relation symbols and
function symbols operating over a carrier set of points.

But general mathematics is carried out in a language richer than that defined
by a single higher order signature. Mathematical statement typically involve
several different instances of several different concepts. For example, we can
abstract a document — a sequence of words — to a multiset (bag) of words.
When we do this we understand that structure has been lost. It is more subtle
than simply noting that different sequences can map to the same bag. A bag
fundamentally has less structure than a sequence. The grammatical (well typed)
statements about a bag are more restricted than the grammatical statements
about a sequence. We cannot talk about the first element of a bag.

Dependent type theory [1] is a formal system for specifying interfaces to objects
and can be used as a formal foundation for mathematics [2]. Unlike set theory,
type theory handles concepts (types) with a specified interface to the instances
of each concept. Type theory allows for statements relating concepts and their
instances in a way that mirrors natural mathematical language.

Isomorphism has been formalized in dependent type theory using the groupoid
model [3]. The groupoid model replaces quantification over sets with quantifica-
tion over groupoids — categories in which every morphism is an isomorphism.
Homotopy type theory replaces quantification over sets with quantification over
a form of infinity groupoid related to algebraic topology. The Morphoid model
achieves compositionality by replacing quantification over sets with quantifica-
tion over “morphoids” [5].

In [6] we achieve a treatment of isomorphism which preserves the intuitive con-
cept of a set as a collection without internal structure — quantification over sets
remains as quantification over sets. Isomorphism and groupoid structure then
emerge naturally from simple but subtle syntactic restrictions on set-theoretic
language. Functors and natural transformations also emerge naturally without
any explicit introduction of groupoids or category theory.

Kevin Buzzard, in his talk at AITP 2018, described the understanding of canon-
ical isomorphisms as a human superpower. Hopefully the approach to isomor-
phism given in [6] will facilitate the automation of this superpower.

2



References
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