Learning theorem proving through self-play

Stanistaw Purgat

University of Innsbruck, Innsbruck, Tirol, Austria
stanislaw.purgal@uibk.ac.at

1 Introduction

This work attempts to apply the AlphaZero algorithm [4] to theorem proving. Following the
philosophy of learning without using any human—generated datasets we attempt to learn to
prove theorems without using any database of proofs or theorems. This is different from other
attempts at ML-guided theorem proving in [2], [3], [1].

The only input we expect before starting training is the set of axioms we can use in our
proofs — no theorems or conjectures.

2 The theorem-construction game

In the game we are using to learn theorem proving, one player constructs a provable theorem
and the other player tries to prove it:

Construct a theorem

Prove the theorem

The goal of the adversary is to construct such a theorem, that the prover will fail to prove
it. Because of the way the construction works, this theorem will have to be provable.

In the game we use prolog-like terms, where a term can be either a variable, or a pair of an
atom and a list of subterms. In the examples we use the convention of marking variables with
capital letters, and denoting compound terms and an atom name followed by a list of subterms
in brackets (skipped when the list is empty).

Eg. node(A, leaf).

The construction game is defined for a given set on inference rules. An inference rule is a
pair of a term and a list of terms, that can share variables.
Eg. tree(node(A, B)) < tree(A),tree(B).

A state here is a pair consisting of a list of terms that need to be proven and an information
about which player is now in control. During its move a player can choose one of the given
inference rules, and apply it to the first term of the list. The left side of the rule is then unified



Learning theorem proving through self-play Stanistaw Purgal

with that term. If the unification fails, the player making the move loses. If it succeeds, the
term is removed from the list, and the right side of the rule (after unification) is added.

The first player (called adversary) starts the game with a list consisting of a single variable
term. It then proceeds to “prove” it using the inference rules. As it is a variable, to begin
with any inference rule can be applied. When the list is empty (meaning that the theorem was
proven), the variable we started with will be unified with some theorem. This theorem is then
given to the other player, after replacing every remaining variable with a fresh ground atom.

The second player then tries to prove the theorem, winning when the list is empty.

To ensure termination of the game, during every move there is a small chance that the
player making the move will immediately lose, so that every game will end with probability 1.

3 Monte Carlo tree search modification

The AlphaZero [4] algorithm utilizes the Monte Carlo Tree Search (MCTS) to estimate state
values and policies. As it is used there it works well, when getting a sure value of a game state
is almost impossible. However, when players don’t take turns, and instead can make several
moves in a row, it’s possible to find a path to a winning state, and prove with certainty the
value of state without searching infeasibly large state space.

To allow propagation of sure state values in our implementation of MCTS we keep track of
upper and lower bound for every state. In a non-final game state these are simply (1) and (—1)
(as the reward is always somewhere between —1 and 1), but in a final state they are both equal
to the outcome of the game. These bounds are then propagated up the tree, in accordance
with state ownership (with which player is making a move in which state). This assures that if
the tree search finds a certain way for one player to win in state s, the value of this state will
become exactly 1.

It is worth pointing out that finding a winning path in the MCTS doesn’t necessarily mean
further search is pointless. Eg., the player constructing the theorem can avoid building theo-
rems, for which the MCTS already found a proof.

4 Preliminary investigation

When training our model on a toy problem (involving reversing a list) we observed that the
performance does improve in time, although it does not achieve a stable high result. Although
we do not use any set of theorems during training, we do require it to measure the performance.



Learning theorem proving through self-play Stanistaw Purgal

10

solved theorems

20k 40k 60k 80k

training time (s)

For estimating value and policy we currently use a variant of a Graph Attention Network [5],
but we plan on experimenting with different architectures, as well as different axiom sets and
hyperparameters.

References

1]
2]

3]
[4]

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, and Christian Szegedy. Learning to reason in
large theories without imitation. ArXiv, abs/1905.10501, 2019.

Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Olsdk. Reinforcement learning
of theorem proving. In NeurIPS, 2018.

Michael Rawson and Giles Reger. A neurally-guided, parallel theorem prover. In FroCos, 2019.
David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap,
Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. ArXiv, abs/1712.01815, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. ArXiv, abs/1710.10903, 2017.



	Introduction
	The theorem-construction game
	Monte Carlo tree search modification
	Preliminary investigation

