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One of the most difficult tasks in higher-order theorem proving is the instantiation of set
variables [3, 4]. An important class of theorem proving problems requiring instantiation of a set
variable are those requiring induction [6]. Instantiating a set variable often requires synthesizing
a formula satisfying some properties. In our work we apply machine learning to the task of
synthesizing formulas satisfying a collection of semantic properties. Previous work applying
machine learning to induction theorem proving can be found in [10].

Hereditarily finite sets In [1] Ackermann proved consistency of Zermelo’s axioms of set
theory without an axiom of infinity by interpeting natural numbers 0, 1, 2, . . . as sets. Member-
ship m ∈ n is taken to hold if bit m is 1 in the binary representation of n, e.g., 0 ∈ 1, 1 ∈ 2
and 0 /∈ 2. This is known as the Ackermann encoding of hereditarily finite sets. We will always
consider terms and formulas to be interpreted via the model given by this encoding.

As terms s, t we take variables x, y, z, . . . as well as ℘(t) (power set of t), {t}, and s ∪ t. As
atomic formulas we take s ∈ t, s 6∈ t, s ⊆ t, s 6⊆ t, s = t and s 6= t. Formulas ϕ,ψ are either
atomic formulas or of the form ϕ⇒ ψ, ϕ ∧ ψ, ∀x ∈ s.ϕ, ∃x ∈ s.ϕ, ∀x ⊆ s.ϕ or ∃x ⊆ s.ϕ. Note
that all our quantifiers are bounded. As a consequence, for every assignment of free variables
to natural numbers we can always (in principle) calculate the truth value for a formula under
the assignment. In practice if certain bounds are exceeded evaluation fails.

Formula Generation All formulas up to size 15 with at most one free variable x were
generated. For each of these formulas we attempted to evaluate the formula with x assigned to
values between 0 and 63. We call this list of truth values the graph of the formula. We omitted
each formula that failed to evaluate on any of these values. For the remaining formulas, we kept
one representative formula (of minimal size) for each subset of {0, . . . , 63} that resulted from
an evaluation. This resulted in a set F of 6750 formulas varying in size from 3 to 15 distributed
as indicated in Table 1.

The Formula Synthesis Problem The goal of the synthesis task is to create a formula
with one free variable for a given graph. To ensure that the task can be achieved, we choose
the graphs of the generated formulas as inputs to our problems. For each formula ϕ ∈ F the
associated problem is to find a formula ψ that has the same graph as ϕ by only observing the
graph of ϕ. We restrict ourselves to solutions that construct ψ from left to right if represented
in prefix notation.

Size 3 4 5 6 7 8 9 10 11 12 13 14 15
No. of formulas 6 8 22 60 88 260 472 960 638 992 1582 1056 606

Table 1: Number of generated formulas of each size
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Figure 1: Number of successful formula synthesis (y) at generation (x)

A Solution by Reinforcement Learning Our reinforcement learning framework [7] relies
on a curriculum learning approach. It perfects its synthesis abilities on the easiest problems
first before moving to harder ones. The difficulty of a problem derived from a formula ϕ ∈ F is
defined to be the size of ϕ. Each level consists of 400 graphs with lower levels containing easier
problems. Each generation consists of an exploration phase and a training phase.

During the exploration phase, the algorithm attempts to find a solution for 400 graphs taken
in equal measure from each level lower or equal to the current level. An attempt for a graph g
consists of a series of big steps. The number of big steps is limited to twice the size of ϕ. One
big step consists of one call to Monte Carlo tree search algorithm with a partial formula ψ as
the root of the search tree. The number of search steps for one MCTS call is set at 50000. Then,
the step from the root with the highest number of visits is chosen. This adds one operator to
ψ. The updated formula becomes the root of the search in the next big step. The algorithm
moves to the next level when it solves strictly more than 75% of the problems in one phase.

During the training phase, a tree neural network (TNN) that predicts both the value and
the policy is trained on the 200000 newest examples. Each of those examples is extracted from
the root tree statistics after one big step. Since we perform searches for many different graphs,
the information about the targeted graph g is given to our network in addition to the partially
constructed formula ψ. They are represented together in the tree structure by concat(g ′, ψ)
where g′ ∈ R64 is the embedding of g and concat is an additional helper operator. When guiding
the MCTS algorithm, noise is added to the predicted policy to favor exploration.

Results In Figure 1, the success rate at each generation of the reinforcement learning run is
shown. Level 1 is passed at generation 76 with 305 formulas synthesized. The run is stopped
at generation 159. In Table 2, the TNN from generation 149 is tested without noise (Guided)
on problems from level 1, 2 and 3. To produce a baseline, we replace the MCTS algorithm by a
breadth-first search algorithm (Breadth-first). We also try to figure how much the input graph
influences the search by masking its embedding g′ (Hidden-graph).

Breadth-first Hidden-graph Guided

Level 1, 2, 3 68, 0, 0 270, 126, 59 338, 240, 165

Table 2: Number of successful formula synthesis in level 1, 2 and 3 respectively

The formula ϕ = ∃y ∈ x. x 6⊆ ℘(y) ∈ F does not seem to have an obvious meaning. From
the graph of ϕ, the equivalent formula ψ = ∃y ∈ x. {y} 6= x is synthesized by our algorithm.
This reveals that the formula defines the predicate for x having at least two elements.

Conclusion This work indicates that formula synthesis for an assignment of truth values can
be learned progressively using only guided exploration as an improvement mechanism. In the
future, we consider improving the techniques developed and integrating them in automated
theorem provers [5, 13, 12] and in general automation [9, 2, 11, 8] for proof assistants.
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