Useful Lemmas in E ATP Proofs

Zarathustra Goertzel and Josef Urban

Czech Technical University in Prague

AITP'19

Outline of talk

- What are lemmas and why do they matter?
- Quantifying lemma usefulness.
- Machine learning to identify lemmas.
- Conclusion.

Lemmas

Lemmas are:

- True statements
- Intermediate results
- Sometimes used in multiple theorems

Why seek lemmas?

- ATPs struggle to find long proofs.
- Conjecturing new (interesting) results.
- Concise presentations of proofs.

Lemmas as Cuts

Given axiom set Γ and conjecture C, we want to prove $\Gamma \vdash C$.

We call L a lemma if the following holds:

$$\frac{\Gamma \vdash L \qquad \Gamma, L \vdash C}{\Gamma \vdash C}$$

* This doesn't require L be a "useful lemma".

Lemmas via Excluded Middle

E is a refutational theorem prover and tries to derive a contradiction: Γ , $\neg C \vdash \bot$.

Therefore the problem can be broken into two sub-problems:

$$\frac{\Gamma, L \vdash C}{\Gamma, (L \lor \neg L) \vdash C}$$

Lemma Usefulness: Proof Shortening Ratio

$$psr(L,\Gamma,C) = \frac{|\Gamma,L \vdash C| + |\Gamma,\neg L \vdash C|}{|\Gamma \vdash C|}$$

If the two sub-problems can be solved (by E) with $psr(L, \Gamma, C) < 1$, L can be said to be a useful lemma.

Dataset: Built From E Proofs

- E's a saturation-based refutational ATP.
- Goal: Prove conjecture from premises.

• E has two sets of clauses:

- *Processed* clauses P (initially empty)
- Unprocessed clauses U (Negated Conjecture and Premises)

• Given Clause Loop:

- Select 'given clause' g to add to P
- Apply *inference rules* to g and all clauses in P
- Process new clauses. Add non-trivial and non-redundant ones to U.
- Proof search succeeds when empty clause is inferred.
- Proof consists of given clauses.

Down and Dirty with the Datset

- 3161 CNF problems from Mizar 40 dataset
- Proved by single E strategy
- For each clause L_i^P of proof P, solve both subproblems.
- 230528 clauses in total

Lemma Stats

- Of the 230528 clauses:
- 98472 are axioms and negated conjectures.
- 87161 are anti-useful lemmas
- 44895 are useful lemmas
- 154 have psr(L, Γ, C) = 1

- Best lemma's psr: 0.0036 (275 times faster)
- Worst lemma: 77 times slower
- Number of lemmas under 0.1: 1509

Lemma Classification

Why?

- To gauge the difficulty of the dataset
- Clear yes/no results compared to regression

Possible use-cases:

- Proof compression for E inference guidance
- Analyze incomplete proof-search to look for lemmas

Clauses ——> Vectors

- Treat clause as tree. Abstract vars and skolem symbols
- Features are descending paths of length 3

Clauses ——> Vectors

Enumerate features (\rightarrow R^|Features| vector space) Count features in a clause for its vector

ML Methods

- Support Vector Machine Classifier (SVC) from scikit-learn
- XGBoost: gradient boosted random decision forest:
 - SVC and XGBoost use |Clause ++ Conjecture| Enigma features.
- Graph Attention Networks (GAT):
 - Assign labels or numbers to nodes via the graph structure.
 - At each level, a node's features depend on its neighbors.
 - Drawback: graph adjacency matrix, large memory consumption
 - Question: Will the proof-graph structure help identify lemmas?

Results

15

Results

	F-score	Precision	Recall	Accuracy
SVC	0.53	0.45	0.64	0.74
GAT	0.55	0.45	0.72	0.55
XGBoost	0.68	0.65	0.72	0.77

Results are on a 10% test set.

Precision and Recall are with respect to useful lemmas.

Conclusions

- GAT appears not to scale, and the proof-graph is not effectively utilized.
- Substitution of the second strain and sufficiently of the second strain of the second stra

Todo:

- Learn more semantic features
- Work on generating lemmas