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Archive of Formal Proofs (https://www.isa-afp.org)

Statistics
Number of Articles: 468

Number of Authors: 313

Home Number of lemmas: ~128,900
About Lines of Code: ~2,170,300
Submission
Updating Most used AFP articles:
Entries Name Used by ? articles
Using Entries 1. Cpllechons_ 15
2. List-Index 14

Search 3. Coinductive 12
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lemma "map T (sep x xs) = sep (f x) (map f xs)"
Assertion 01: apply (induct x xs rule: sep.induct)
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What assertions | wanted to write / wrote...
lemma "map T (sep x xs) = sep (f x) (map f xs)"
Assertion 01: apply (induct x xs rule: sep.induct)

If the induct method uses an auxiliary lemma (sep.induct) ...

check if the induction variables (x and xs) are arguments of the constant (sep)

that has an auxiliary lemma (sep.induct). tain constants!

\
relative to C€ _ imes in the goal!
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: Induction va o
primrec my append :: "'a list = 'a list = 'a list" (infixr "@@" 6.
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lemma "(x @@ v) @@ z = x @@ (y @@ z)" apply (induct x)

Assertion 02: apply auto

Do induction on argument number i if the function is defined by recursion in
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What assertions | wanted to write / wrote...
lemma "map T (sep x xs) = sep (f x) (map f xs)"
Assertion 01: apply (induct x xs rule: sep.induct)

If the induct method uses an auxiliary lemma (sep.induct) ...

check if the induction variables (x and xs) are arguments of the constant (sep)

that has an auxiliary lemma (sep.induct). tain constants!

\
relative to C€ _ imes in the goal!
position o e“rgumem::l’ables (x and xs) appear multiple U
: Induction va o
primrec my append :: "'a list = 'a list = 'a list" (infixr "@@" 6.
append Nil: "[] @@ ys = ys" |
append_ConS v U (X#XxS) @@ ysS = X # XS @@ ys "

lemma "(x @@ v) @@ z = x @@ (y @@ z)" apply (induct x)

Assertion 02: apply auto

Do induction on argument number i if the function is defined by recursion in
argument number i? p constams\.
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Are induction variables appear at the deepest level in the syntax tree?
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At the time of development (2017), PSL does
not know about

- user defined constants (e.g. “sep”) or

- user defined proof strategies (e.g. DInd).




