git clone https://github.com/data61/PSL

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466).

Yutaka Nagashima

University of Innsbruck
Czech Technical University

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTUIN PRAGUE

Yutaka Ng
yutakang

Block or report user

22 CVUT, CTU, CIIRC

git clone https://github.com/data61/PSL

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466).

git clone https://github.com/data61/PSL

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466).

Who is Isabelle?

git clone https://github.com/data61/PSL

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466).

Who is Isabelle?

Why induction?

git clone https://github.com/data61/PSL

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466).

ITP (Inductive Theorem Proving)
problems are at the heart of many
verification and reasoning tasks in

Who is Isabelle?

Why induction?

Prof. Bernhard Gramlich
ittps://www.logic.at/staff/gramlich/

git clone https://github.com/data61/PSL

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466).

ITP (Inductive Theorem Proving)
problems are at the heart of many
verification and reasoning tasks in

Who is Isabelle?

Why induction?

we are convinced that substantial
progress in ITP will take time.

o
»
‘, -"‘
‘\

.

Prof. Bernhard Gramlich
ittps://www.logic.at/staff/gramlich/

git clone https://github.com/data61/PSL

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466).

ITP (Inductive Theorem Proving)
problems are at the heart of many
verification and reasoning tasks in

Who is Isabelle?

Why induction?

we are convinced that substantial
progress in ITP will take time.

spectacular breakthroughs are
unrealistic, in view of the enormous
problems and the inherent difficulty of
iInductive theorem proving.

Prof. Bernhard Gramlich
ittps://www.logic.at/staff/gramlich/

Strategic Issues, Problems and Challenges in Inductive Theorem Proving

git clone https://github.com/data61/PSL

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466).

ITP (Inductive Theorem

we are convinced that subs! gl
progress in ITP will take ti

spectacular breaki yutaka Ng
unrealistic, in view ofyutakang
problems and the inheg &eckorresortuser
iInductive theorel

22 CVUT, CTU, CIIRC

Prof. Bernhard Gramlich
ittps://www.logic.at/staff/gramlich/

Strategic Issues, Problems and Challenges in Inductive Theorem Proving

git clone https://github.com/data61/PSL

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466).

ITP (Inductive Theorem ' —
problems are at the hea Challenge accepted!
verificati o -

The time has %
come! i

t.
—_— —_— e — —_— g v

spectacular breaki yutaka Ng
unrealistic, in view ofyutakang
problems and the inheg &eckorresortuser
iInductive theorel

22 CVUT, CTU, CIIRC

Prof. Bernhard Gramlich
ittps://www.logic.at/staff/gramlich/

Strategic Issues, Problems and Challenges in Inductive Theorem Proving

git clone https://github.com/data61/PSL

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466).

ITP (Inductive Theorem ' —
problems are at the hea Challenge accepted! { "
verificati T o

The time has Y

“a v

come! et

L »
-

—_— ...0r is coming R
SK soon. aka Ng
unrec , T VIEW OT7o=Kang

prOblemS and the Inhe Block or report user
iInductive theorel

,] 22 CVUT, CTU, CIIRC
Prof. Bernhard Gramlich

ittps://www.logic.at/staff/gramlich/
Strategic Issues, Problems and Challenges in Inductive Theorem Proving

git clone https://github.com/data61/PSL

Interactive theorem proving with
Isabelle/HOL

git clone https://github.com/data61/PSL

Interactive theorem proving with

Isabelle/HOL

tactic / proof method

git clone https://github.com/data61/PSL

Interactive theorem proving with
Isabelle/HOL

error-message
subgoals

git clone https://github.com/data61/PSL

Interactive theorem proving with
Isabelle/HOL

error-message
subgoals

git clone https://github.com/data61/PSL

Interactive theorem proving with
Isabelle/HOL

error-message
subgoals| | no sub-goal!

git clone https://github.com/data61/PSL

Interactive theorem proving with

Isabelle/HOL
proof goal

tactic / proof method
e, :
02020202 = \'\'“:
3fror-message
subgoals| | no sub-goal!

git clone https://github.com/data61/PSL

Interactive theorem proving with
Isabelle/HOL

7/
R ‘o
./
X et Ve
4 ‘-
w@

no sub-goal!

[

one https://github.com/data61/PSL

. g with
OL

Interacti s0re

Isabelle

one https://github.com/data61/PSL

. g with
OL

Interacti s0re

Isabelle

one https://github.com/data61/PSL

. g with
OL

Interacti s0re

Isabelle

Sage

It's blatantly clear

You stupid machine, that what m
I tell you 1is true
(Michael Norrish)

T

one https://github.com/data61/PSL

. g with
OL

Interacti s0re

Isabelle

You stupid machi
I tell you~
(Michae

git clone https://github.com/data61/PSL
lemma "map T (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

o OO gbﬁ%}o
ooo OO0

IR IR iC)

git clone https://github.com/data61/PSL
lemma "map T (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

\)0“

v

Q\q § Dynamic (Induct)

06 dob\é O

Auto

OOO O00:

IsSoIved

IR IR iO

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

Dynamlc (Induct))

L N NEm~N"7N\N NN S NN
Ay. vy € {F. is filter F} = map f (sep x xs) = sep (f x) (map f xs)

//_/_/uu\,/uu

Auto)

OOOOOOQ .

o
oA

>

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

Dynanuc(lnduct) ;)

L N NEm~N"7N\N NN S NN
Ay. vy € {F. is filter F} = map f (sep x xs) = sep (f x) (map f xs)

AW AN AW LA
apply (auto) AUtO _)

OOOOOOQ -

o
oA

>

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

N

&
QQ“ Dynamic (Induct))
0 > - -

L N NEm~N"7N\N NN S NN
Ay. vy € {F. is filter F} = map f (sep x xs) = sep (f x) (map f xs)

P A N N A W W A A

apply (at (auto) AUtO)
v -
 \ f \ f"\ f"\ - \ /'"\ - \ ST
Ay. is filter y = map f (sep x xs) = sep (f x) (map f xs)

Q | | | IsSo_Ived |))

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

Dynanuc(lnduct) ;)

L N NEm~N"7N\N NN S NN
Ay. vy € {F. is filter F} = map f (sep x xs) = sep (f x) (map f xs)

AW AN AW LA
apply (auto) AUtO _)

OOOOOOQ -

o
oA

>

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

N

Q“é Dynamic (Induct)
apply (auto) AUtO

OOOOOOQ)

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

goal
48)
da’

/e &
Q<?\“\\,\\,namlc (Induct)
apply (at (auto) AUtO

OOOOOOQ)

git clone https://github.com/data61/PSL
lemma "map f (sep x) = sep (f x) (map f x5)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

‘{;goal?
\)0

/e &
Q<?\“\\,\\,namlc (Induct)
apply (at (auto) AUtO

OOOOOOQ)

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

goal
48)
da’

/e &
Q<?\“\\,\\,namlc (Induct)
apply (at (auto) AUtO

OOOOOOQ)

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

goal
- 6§§\»§*¢£::::)

o \,\\,namlc (Induct))
20 . _a® —
1. map f (sep x []) = sep (f x) (map f [])

2. Na xs
map f (sep x xs) = sep (f x) (map f xs) —
P map f (sep x (a # xs)) = sep (f x) (map f (a # xs))

apply (auto) AUtO

OOOOOOQ

IsSoIved

UU

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

‘fggoal?
G

/_\(\6\)0‘\6\)
o s namic (Induct))
6 AO D S

1. map f (sep x []) = sep (f x) (map f [])

2. Na xs
map f (sep x xs) = sep (f x) (map f xs) —
P map f (sep x (a # xs)) = sep (f x) (map f (a # xs))

apply (auto) apply (auto) AUtO

OOOOOOQ

IsSoIved

UU

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

goal
O ‘jéc:::)
//T\a° v’

N \\,\\,namlc (Ir]dugt)‘)
1. map f (sep x []) = sep (f x) (map f [])

2. Na xs
map f (sep x xs) = sep (f x) (map f xs) —
P map f (sep x (a # xs)) = sep (f x) (map f (a # xs))
apply (auto) apply (auto) Auto)
S— — — — — — v —

1. Aa xs. ORI
map f (sep x xs) = sep (f x) (map f xs) — : :
map f (Sep X (a # XS)) = SEep (f X) (f a # map f XS)"" ®anns?

C | | | IsSo_Ived _)

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

‘fggoal?
G

/_\(\6\)0‘\6\)
o s namic (Induct))
6 AO D S

1. map f (sep x []) = sep (f x) (map f [])

2. Na xs
map f (sep x xs) = sep (f x) (map f xs) —
P map f (sep x (a # xs)) = sep (f x) (map f (a # xs))

apply (auto) apply (auto) AUtO

OOOOOOQ

IsSoIved

UU

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

goal
6\)0\ \)0*@

“»,nannc (Induct)

/—\
aQQ\

Ooooodboo

apply (at (auto) apply (auto) AUtO

OOOOOOQ)

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

oal
\9 P
0‘\ *660 o,

6\) \)0
Qg_“‘\\,\\?namlc,"/o, “'uct))
2

OOOOOO%QO

apply (auto) apply (auto) AUtO "Og

OOOOOOQ -

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

\goal
- & 00‘*6%0
o\ ‘\\,namlc,"// Nict) \

N .
% o1 Aa. map T (sep %Oi - 'sep (f a) (map f [1)
° 2. Na x. map T (sep a *s,. sep (f a) (map f [x])

3. N\a x vy zs. "/e
map f (sep a (y # zs)) = 0’7) a) (map f (y # zs)) =
map f (sep a (x # y # zs)) = -o. eba) (map T (x # y # zs))

apply (at (auto) apply (auto) AUtO "7%,0;

OOOOOOQ)

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

\goal
- & 00‘*6‘%0
o\ ‘\\,namlc,"// Nict) \

N .
% o1 Aa. map T (sep %Oi - 'sep (f a) (map f [1)
° 2. Na x. map T (sep a ‘l's,. sep (f a) (map f [x])

3. N\a x vy zs. "/e
map f (sep a (y # zs)) = 0’7) a) (map f (y # zs)) =
map f (sep a (x # y # zs)) = O, eba) (map T (x # y # zs))

apply (auto) apply (auto) AUtO apply (auto) ”d(,ol)

OOOOOOQ)

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

\goal
- & 00‘*6‘%0
o\ ‘\\,namlc,"// Nict) \

N .
% o1 Aa. map T (sep %Oi - 'sep (f a) (map f [1)
° 2. Na x. map T (sep a 4’3’. sep (f a) (map f [x])

3. N\a x vy zs. "/e
map f (sep a (y # zs)) = 0’7? a) (map f (y # zs)) =
map f (sep a (x # y # zs)) = O, eba) (map T (x # y # zs))

apply (auto) apply (auto) AUtO apply (auto) ”d(,ol)

OOOOOMWN»
IsSoIved)

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

\goal
- & 00‘*6‘%0
o\ ‘\\,namlc,"// Nict) \

N .
% o1 Aa. map T (sep %Oi - 'sep (f a) (map f [1)
° 2. Na x. map T (sep a 4’3’. sep (f a) (map f [x])

3. N\a x vy zs. "/e
map f (sep a (y # zs)) = 0’7? a) (map f (y # zs)) =
map f (sep a (x # y # zs)) = O, eba) (map T (x # y # zs))

apply (auto) apply (auto) AUtO apply (auto) ”d(,ol)

ooooomww»

IsSolved %'7@)

git clone https://github.com/data61/PSL
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

$goa’
ﬁk&)

N «F
6§° Ry
j;l_ww,nanuc’a%ﬂuct\lrtv

Number of lines of commands: 3
(:: apply (induct xs rule: Demo.sep.1induct)
apply auto
done

[x])

f (y # zs)) —
map f (x # y # zs))

)

- Ccy

OOOOO (s 2

IsSolved %,)

r
apply (a

git clone https://github.com/data61/PSL

Try_Hard: the default strategy

strategy Try Hard =

'Ors [Thens [Subgoal, Basic],
S — Thens [DinductTac, Auto_Solve],
strategy Basic = | Thens [DCaseTac, Auto_Solve],
Ors [Thens [Subgoal, Advanced],
' Auto_Solve, Thens [DCaseTac, Solve_Many],
| Blast_Solve, Thens [DinductTac, Solve_Many]]
FF_Solve, | | - o

nens [IntroClasses, Auto_Solve],
Thens [Transfer, Auto_Solve], .
- 16 percentage point performance

nens :Normal'zat'on’ IsSolved], iImprovement compared to sledgehammer
nens [DInduct, Auto_Solve],

nens [Hammer, IsSolved],
nens [DCases, Auto_Solve], but the search space explodes

nens [DCoinduction, Auto_Solve], , *

nens [Auto, RepeatN(Hammer), IsSolved], ‘
| 1eNs -DAUtO; IsSolved]] PaMpeR: Proof Method Recommendation

preparation phase

How does
PaMpeR work?

recommendation phase

preparation phase

large proof corpora

\/

AFP and standard library

How does
PaMpeR work?

recommendation phase

proof
state

® O
proof
w ﬁ engineer

preparation phase

large proof corpora

\/

AFP and standard library

STATISTICS

Archive of Formal Proofs (https://www.isa-afp.org)

Statistics
Number of Articles: 468

Number of Authors: 313

Home Number of lemmas: ~128,900
About Lines of Code: ~2,170,300
Submission
Updating Most used AFP articles:
Entries Name Used by ? articles
Using Entries 1. Cpllechons_ 15
2. List-Index 14

Search 3. Coinductive 12

preparation phase

large proof corpora

\/

AFP and standard library

How does
PaMpeR work?

recommendation phase

proof
state

® O
proof
w ﬁ engineer

preparation phase

large proof corpora

\/

AFP and standard library

full feature extractor

6021

<

CPU hours

108 assertions

How does
PaMpeR work?

recommendation phase

proof
state

® O
proof
w ﬁ engineer

preparation phase

large proof corpora

\/

AFP and standard library

full feature extractor

database (425334 data points)

6021

<

CPU hours

—> v\ > (tactic_name, [bool])
V\ -
v

108 assertions

How does
PaMpeR work?

recommendation phase

proof
state

® O
proof
w ﬁ engineer

full feature extractor database (425334 data pOintS)

preparation phase

large proof corpora

\/

—> v\ > (tactic_name, [bool])
V\ -
v

* preprocess

<

6021 |CPU hours

AFP and standard library

108 assertions

How does
PaMpeR work?

+ decision tree construction

S EIT LT

recommendation phase

proof
state

® O
proof
w ﬁ engineer

preparation phase full feature extractor database (425334 data points)

large proof corpora

\/

S —) :
I q V\’ :: (tactic_name, [bool])
V\’
@ —

* preprocess

6021 |CPU hours

AFP and standard library

108 assertions

How does
PaMpeR work?

+ decision tree construction

]] e
recommendation phase fast feature extractor

proof
state

® O
proof
w ﬁ engineer

preparation phase full feature extractor database (425334 data points)

large proof corpora

\/

S —) :
I q V\’ :: (tactic_name, [bool])
V\’
@ —

* preprocess

6021 |CPU hours

AFP and standard library

108 assertions

How does
PaMpeR work?

+ decision tree construction

S EIT LT

recommendation phase fast feature extractor feature vector

proof
state

—

® O
proof
w ﬁ engineer

preparation phase full feature extractor database (425334 data points)

large proof corpora

\/

S —) :
I q V\’ :: (tactic_name, [bool])
V\’
@ —

* preprocess

AFP and standard library 6021(CPU hours

How does A |
PaMpeR Work? o idemsmntr;econstructlon
o

recommendation phase fast feature extractor feature vector

proof
state

lookup
® O
proof
engineer proof method
‘ recommendation

preparation phase

database (425334 data points)

full feature extractor

large proof corpora

\/

AFP and standard library 6021

v .

—> v\ > (tactic_name, [bool])
V\ -

v

* preprocess

<

CPU hours

108 asse

How does
PaMpeR work?

+ decision tree construction

S EIT LT

recommendation phase

fast feature extractor

feature vector

0

lookup

a

proof I
state

® O
proof

w ﬁ engineer |

proof method
recommendation

]

git clone https://github.com/data61/PSL

AITP2018 review

anonymous
reviewer

git clone https://github.com/data61/PSL

AITP2018 review

[Proof Method Recommendation, PaMpeR!]

anonymous
reviewer

git clone https://github.com/data61/PSL

AITP2018 review

[Proof Method Recommendation, gal_llpegl,

I have doubts about various approaches
proposed in the paper.

anonymous
reviewer

git clone https://github.com/data61/PSL

XITP2018 review

[Proof Method Recommendation, gal_llpegl,

I have doubts about various approaches
V proposed in the paper.

anonymous
reviewer

XITP2018 review

[Proof Method Recommendation, PaMp

New users of Isabelle are facing many
challenges from
writing their first definitions,

— stating suitable theorem statements, an

producing properly structured proofs.

git clone https://github.com/data61/PSL

.

I have doubts about various approaches
proposed in the paper.

=

anonymous

reviewer

git clone https://github.com/data61/PSL

XITP2018 review

[Proof Method Recommendation, gal*_llpegl,

I have doubts about various approaches
v proposed in the paper.

New users of Isabelle are facing many
challenges from
— writing their first definitions,
— stating suitable theorem statements, an

— producing properly structured proofs. anonymous
reviewer

A

Proof methods are merely the bits at the bottom of that.

=

git clone https://github.com/data61/PSL

XITP2018 review

[Proof Method Recommendation, gal_llpegl,

I have doubts about various approaches
V proposed in the paper.

New users of Isabelle are facing many
challenges from
— writing their first definitions,
— stating suitable theorem statements, an

— producing properly structured proofs. anonymous
reviewer

A

[Proof methods are merely the bits at the bottom of that.]

=

I was writing how to prove not how to specify!]

git clone https://github.com/data61/PSL

XITP2018 review

[Proof Method Recommendation, gal_llpegl,

I have doubts about various approaches
V proposed in the paper.

New users of Isabelle are facing many
challenges from
— writing their first definitions,
— stating suitable theorem statements, an

— producing properly structured proofs. anonymous
reviewer

A

[Proof methods are merely the bits at the bottom of that.]

=

I was writing how to prove not how to specify!]

git clone https://github.com/data61/PSL

XITP2018 review

[Proof Method Recommendation, gal_llpegl,

I have doubts about various approaches
proposed in the paper.

New users of Isabelle are facing many
challenges from
— writing their first definitions,
— stating suitable theorem statements, an

— producing properly structured proofs. anonymous
reviewer

A

[Proof methods are merely the bits at the bottom of that.]

=

I was writing how to prove not how to specify!]

Proof Goal Transformer, PGT!]

git clone https://github.com/data61/PSL

PSL with PGT

git clone https://github.com/data61/PSL

PSL with PGT

proof goal sub-optimal
for proof automation

git clone https://github.com/data61/PSL

PSL with PGT

proof goal sub-optimal roof aoal
for proof automation
tactic / sub-tool

git clone https://github.com/data61/PSL

PSL with PGT

proof goal sub-optimal roof aoal
for proof automation

tactic / sub-

proved theorem /
subgoals / message

git clone https://github.com/data61/PSL

PSL with PGT

proof goal sub-optimal roof aoal
for proof automation
PGT strategy tactic / sub-tool

m—

proof for the original goal, proved theorem /
and auxiliary lemma subgoals / message

optimal for proof automation

git clone https://github.com/data61/PSL

PSL with PGT

proof goal sub-optimal roof aoal
for proof automation
PGT strategy tactic / sub-tool

am—

proof for the original goal,
and auxiliary lemma
optimal for proof automation

goal (1 subgoal):

1. 1itrev xs [] = rev xs

git clone https://github.com/data61/PSL

/11. AR

Conjecture
Slele O\ng

Fastforce

C&éx ; &éé*‘---o

C

chkcheck

T

Dind

i?i

Dind

git clone https://github.com/data61/PSL

rgoal (1 subgoal): | apply (subgoal tac

1. itrev xs [] = rev xs "ANil. itrev xs Nil = rev xs @ Nil")
‘ /Illl‘\\

Conjecture

@, OOOO

Fastforce
Cwy : xéé*

I
(chkcheck

(/% i?i

Dind Dind

goal (1 subgoal)

: a
zZ /2] 1 \\ &= f

1.

git clone https://github.com/data61/PSL

Conjectu re

pply (subgoal tac

itrev xs Nil = rev xs @ Nil")

OOOO

goal (2 subgoals):
1.

2.

(ANil. itrev xs Nil = rev xs @ Nil) =
itrev xs [] = rev xs
ANil. itrev xs Nil = rev xs @ Nil

Quickcheck

Q
g (5 ¢ *a3$0r2¢ —3
C

R

Dind Dind

rev xs @ Nil")

/PSL

goal (1 subgoal): apply (subgoal tac
1. itrev xs [] = rev Xxs "ANil. itrev xs Nil =
- w72 I | \\ S f

itrev xs [] =

goal (2 subgoals):
ConjeCture 1. (ANil. itrev xs Nil =

rev Xs

2. ANil. itrev xs Nil =

rev xs @ Nil) —=

rev xs @ Nil

QO O O O O
g Fastforce <app1y fastforcLeq)
C

ST ST OO

chkcheck

AN A A A A &

DInd DInd

goal (1 subgoal)

. git clone https://github.com/data61/PSL
: m apply (subgoal tac
itrev xs [] = rev xs "ANil. itrev xs Nil = rev xs @ Nil")
77T TISS= f |

1.

Conjectu re

goal (2 subgoals):
1. (ANil. itrev xs Nil = rev xs @ Nil) =
itrev xs [] = rev xs

OOOO

2. ANil. itrev xs Nil = rev xs @ Nil

Fastforce < 2Py fastf”bl)

goal (1 subgoal):
élﬁ /\N11 1trev xs Nil = rev xs @ Nil

Q
TETETS
C

chkcheck

c*? ' i?i

Dind

Dind

goal (1 subgoal)

. git clone https://github.com/data61/PSL
: m apply (subgoal tac
itrev xs [] = rev xs "ANil. itrev xs Nil = rev xs @ Nil")
77T TISS= f |

1.

Conjecture

goal (2 subgoals):
1. (ANil. itrev xs Nil = rev xs @ Nil) =
itrev xs [] = rev xs

2. ANil. itrev xs Nil = rev xs @ Nil

Fastforce < 2Py fastf”bl)

goal (1 subgoal):
élﬁ /\N11 1trev xs Nil = rev xs @ Nil

S, 2 G
TETaTE
C

chkcheck

i
1

goal (1 subgoal):
1. ANil. itrev xs Nil

’.III'

rev xs @ Nil]

Dind

Dind

goal (1 subgoal)

= apply
itrev xs [] = rev xs "ANil.
777 1 1 \\3SS f

1.

Conjecture

git clone https://github.com/data61/PSL
(subgoal tac

itrev xs Nil = rev xs @ Nil")

goal (2 subgoals):
1.

2.

(ANil. itrev xs Nil = rev xs @ Nil) =
itrev xs [] = rev xs
ANil. itrev xs Nil = rev xs @ Nil

c*:*wé

goal (1 subgoal):
élﬁ /\N11 1trev xs Nil = rev xs @ Nil

chkcheck

O DG
g Fastforce <a'°'°‘y fastf”bl)

i
1

goal (1 subgoal):

1. ANil. itrev xs Nil = rev xs @ Nil]

’.III'

apply (induct xs)

Dind

DInd <

apply auto
done

goal (1 subgoal)

= apply
itrev xs [] = rev xs "ANil.
777 1 1 \\3SS f

1.

Conjecture

git clone https://github.com/data61/PSL
(subgoal tac

itrev xs Nil = rev xs @ Nil")

goal (2 subgoals):
1.

2.

(ANil. itrev xs Nil = rev xs @ Nil) =
itrev xs [] = rev xs
ANil. itrev xs Nil = rev xs @ Nil

c*:*wé

goal (1 subgoal):
élﬁ /\N11 1trev xs Nil = rev xs @ Nil

O DG
g Fastforce <a'°'°‘y fastf”bl)

chkcheck
* goal (1 subgoal):
? * ¢ 1. ANil. itrev xs Nil = rev xs @ Nil
//\\ apply (induct xs)
apply auto
Dind Dind < done

theorem 1trev ?xs [] = rev ?xs]

. : git clone https://github.com/data61/PSL
goal (1 subgoal): m apply (subgoal tac
. itrev xs [] = rev xs "ANil. itrev xs Nil = rev xs @ Nil")
77 I 1| \N\SS f)

goal (2 subgoals):
ConJeCture 1. (ANil. itrev xs Nil = rev xs @ Nil) =

itrev xs [] = rev xs

ANil. itrev xs Nil = rev xs @ Nil

~ . 1€ .. _ /(:anrﬂ Y 'F;:c+'Fnrr

Number of lines of commands: 5
_apply (subgoal tac "ANil. itrev xs Nil = rev xs @ Nil") i1
apply fastforce

(apply (induct xs)

apply auto
done | | Nil\
//\\ apply (induct xs)
apply auto
Dind Dind < done

theorem 1trev ?xs [] = rev ?xs]

git clone https://github.com/data61/PSL

Success story

PSL can find how to apply
induction for easy problems.

git clone https://github.com/data61/PSL

Success story

PSL can find how to apply
induction for easy problems.

PaMpeR recommends which
proof methods to use.

git clone https://github.com/data61/PSL

Success story

PSL can find how to apply
induction for easy problems.

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

git clone https://github.com/data61/PSL

Success story

PSL can find how to apply M
induction for easy problems.

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

git clone https://github.com/data61/PSL

Success story
PSL can find how to apply M
induction for easy problems.
PaMpeR recommends which A5E20'\8
proof methods to use.

PGT produces useful auxiliary
lemmas.

git clone https://github.com/data61/PSL

Success story

PSL can find how to apply
induction for easy problems.

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

git clone https://github.com/data61/PSL

Too good to be true?

PSL can find how to apply
induction for easy problems.

PaMpeR recommends which /
proof methods to use. v

PGT produces useful auxiliary
lemmas.

git clone https://github.com/data61/PSL

Too good to be true?

PSL can find how to apply

induction for 223 roof search

e

PaMpeR recommends which /
proof methods to use. v

PGT produces useful auxiliary

VAL Pé?_n\m{ "pGT completes d
proof search

git clone https://github.com/data61/PSL

Too good to be true?

PSL can find how to apply

nduction of eaiipletds arproof search

(HHH
PaMpeR recommends which y
proof methods to use. end
but PaMpeR does not recom v

for proof methods

PGT produces useful auxiliary

VAL Pé?_"m SPGT completes a
proof search

git clone https://github.com/data61/PSL

Too good to be true?

PSL can find how to apply

induction for 223 roof search

(HHHH
PaMpeR recommends which y
proof methods to use. end
but PaMpeR does not recom v

for proof methox
Recommend how to

lemmas apply induction without
only if PSL wit pGT compl completing a proof.
proof search

PGT produces useful auxiliar

git clone https://github.com/data61/PSL

Too good to be true?

Recommend how to
apply induction without
L with PGT compl completing a proof.

MeLold: Machine

Learning Induction

preparation phase active mining [(apply(induct x arbitrary: y), used),

(apply(induct y arbitrary: x), not),
(apply(induct arbitrary: y), used),

lemma “foo xy = bar x y”
apply(induct x arbitrary: y)

large proof corpora

(apply(lnducltxrule bar.induct), not),...1]
N7 [([1,0,0,1,...
full feat ([0,1,0,1,...
ull feature Q
I extractor >

([1,1,0,0,...
([0,1,0,0,...

AFP and standard library

decision tree

about 40 assertions
construction

How does written in ML

1], used),
1], not),

1], used),
1], not), ...]

MeLold work? z ﬂ E

recommendation phase fast feature extractor
Dynamlc) [[1!1!0!1!-"1]!
“ y (IndUCt) [apply(lndUCt S), — [0!050!1 ,---1]!
lemma “fst==>gsu apply(induct 1), [1,1,1,0,...1],
apply(induct u), [1,1,0,1,...1], ...]
proof apply(induct s t arbitrary: u), ...]
state
lookup
proof

[(0.3, apply(induct s t arbitrary: u))
engineer (0.2, apply(induct s t)),

(0.15, apply(induct t arbitrary: u)),
(0.11, apply(induct u)), ...]

preparation phase active mining [(apply(induct x arbitrary: y), used),

(apply(induct y arbitrary: x), not),
(apply(induct arbitrary: y), used),

lemma “foo xy = bar x y”
apply(induct x arbitrary: y)

large proof corpora

(apply(mducltx rule: bar.induct), not),...]
= [([1,0,0,1,...1], used),
full feat ([0,1,0,1,...1], not),
ull feature _’
I extractor

([1,1,0,0,...1], used),
([0,1,0,0,...1], not), ...]

AFP and standard library

How does

decision tree

rtions)
construction

in ML
I

mn

MelLold W Writing useful assertions in ML is very tricky. B E
=> Domain specific language for writing assertions! h
v
recommendation phase fast feature extractor
Dynamlc . [[1!1!0!1!-"1]!
ormra 46 & £ oes q s U7 (Induct) [apply(induct s) - [0,0,0,1,...1],
emma 1st==>9gsu apply(induct t), [1,1,1,0,...1],
apply(induct u), [1,1,0,1,...1], ...]
proof apply(induct s t arbitrary: u), ...]
state
lookup
proof

[(0.3, apply(induct s t arbitrary: u))
engineer (0.2, apply(induct s t)),

(0.15, apply(induct t arbitrary: u)),
(0.11, apply(induct u)), ...]

preparation phase active mining [(apply(induct x arbitrary: y), used),

(apply(induct y arbitrary: x), not),
(apply(induct arbitrary: y), used),

lemma “foo xy = bar x y”
apply(induct x arbitrary: y)

large proof corpora

(apply(mducltx rule: bar.induct), not),...]
= [([1,0,0,1,...1], used),
full feat ([0,1,0,1,...1], not),
ull feature _’
I extractor

([1,1,0,0,...1], used),
([0,1,0,0,...1], not), ...]

AFP and standard library
rtions

How does nmL -

MelLold V\Writi_ngAusefuI assertions in ML is very tricky. _ E
=> Domain specific language for writing assertions! h

decision tree
construction

v

feature extractor

—>

nduct s t arbitrary: u), ...]

recommendation phase

[[1,1,0,1,...1],
[0,0,0,1,...1],
[1,1,1,0,...1],
[1,1,0,1,...1], ...]

Dynamic
ﬂnducﬂ

lemma “fst==>gsu”

proof
state

lookup

proof [(0.3, apply(induct s t arbitrary: u))

engineer (0.2, apply(induct s t)),
(0.15, apply(induct t arbitrary: u)),
(0.11, apply(induct u)), ...]

git clone httpg://github.com/data61/PSL

Thank you!

git clone httpg://github.com/data61/PSL

Thank you!

Leave a star at
GitHub for PSL!

git clone httpg://github.com/data61/PSL

Thank you!

Leave a star at
GitHub for PSL!

git clone httpg://github.com/data61/PSL

Thank you!

Leave a star at
GitHub for PSL!

Let’s write a review paper
“AlITP deserves High-Performance Computing, Too!”

PaMpeR’s feature
extractor?

git clone https://github.com/data61/PSL

Time

git clone https://github.com/data61/PSL

1986~ Isabelle

Time

git clone https://github.com/data61/PSL

1986~ Isabelle
Time —
2004~ AFP

git clone https://github.com/data61/PSL

2017~ PaMpeR

1986~ Isabelle
Time —
2004~ AFP

git clone https://github.com/data61/PSL

2017~ PaMpeR

1986~ Isabelle
Time —
2004~ AFP

2018~ more articles

In the AFP

git clone https://github.com/data61/PSL

2017~ PaMpeR

2018 PaMpeR’s

data extraction
1986~ Isabelle
Time —
2004~ AFP

2018~ more articles

In the AFP

git clone https://github.com/data61/PSL

2017~ PaMpeR

2019 definition of the “sep”
function

2018 PaMpeR’s

data extraction
1986~ Isabelle
Time —
2004~ AFP

2018~ more articles

In the AFP

git clone https://github.com/data61/PSL

2017~ PaMpeR

2019 definition of the “sep”
function

2018 PaMpeR’s

data extraction
1986~ Isabelle
Time —
2004~ AFP

2018~ more articles
In the AFP

lemma “map f (sep x xs) = sep
(f x) (map f xs)"

git clone https://github.com/data61/PSL

2017~ PaMpeR
2019 definition of the “sep”

function

2018 PaMpeR’s

data extraction AITP2019
1986~ Isabelle which_method?

2004~ AFP

2018~ more articles
In the AFP

lemma “map f (sep x xs) = sep
(f x) (map f xs)"

Ti

\ PaMpeR’s feature extractor has to

git clone https://github.com/data61/PSL

2017~ PaMpeR

2019 definition of the “sep”
function

2018 PaMpeR’s
Aata Aavirarntinn AITP201 9

be able to analyze things (e.g.
“sep”) that do not exist yet!

2018~ more articles

In the AFP

lemma “map f (sep x xs) = sep

(f x) (map f xs)"

Ti

\ PaMpeR’s feature extractor has to

git clone https://github.com/data61/PSL

2017~ PaMpeR

2019 definition of the “sep”
function

2018 PaMpeR’s
Aata Aavirarntinn AITP201 9

be able to analyze things (e.g.
“sep”) that do not exist yet!

2018~ more articles

In the AFP

lemma “map f (sep x xs) = sep

(f x) (map f xs)"

Feature extractor?

Llemma "map f (sep X xs) = sep (f x) (map f xs)"

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
||Sep a [] — [:u I
"sep a [x] = [x]" |

"sep a (x#y#zs) = x # a # sep a (y#zs)"

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
||Sep a] — [:u I
"sep a [x] = [x]" |

"sep a (x#y#zs) = x # a # sep a (y#zs)"

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

assertion 27: if the outermost constant is the HOL equality?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
||Sep a [] — [:u I
"sep a [x] = [x]" |

"sep a (x#y#zs) = x # a # sep a (y#zs)"

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"
assertion 27: if the outermost constant is the HOL equality?]

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
||Sep a] — [:u I
"sep a [x] = [x]" |

"sep a (x#y#zs) = x # a # sep a (y#zs)"
automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.
Llemma "map f (sep x xs) = sep (f x) (map f xs)"

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
||Sep a [] — [:u I
"sep a [x] = [x]" |

"sep a (x#y#zs) = x # a # sep a (y#zs)"
automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.
Llemma "map f (sep x xs) = sep (f x) (map f xs)"
X

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifie

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
||Sep a [] — [:u I
"sep a [x] = [x]" |

"sep a (x#y#zs) = x # a # sep a (y#zs)"
automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.
Llemma "map f (sep x xs) = sep (f x) (map f xs)"
X

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifie

assertion 93: if the goal has a term of type “real”?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
||Sep a [] — [:u I
"sep a [x] = [x]" |

"sep a (x#y#zs) = x # a # sep a (y#zs)"
automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

assertion 27: if the outermost constant is the HOL equality? /
assertion 32: if the outermost constant is the HOL existential quantifier.x

assertion 93: if the goal has a term of type “real”?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
"sep a [] = []" |
"sep a [x] = [x]" |

"sep a (x#y#zs) = x # a # sep a (y#zs)"

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

assertion 27: if the outermost constant is the HOL equality? /
assertion 32: if the outermost constant is the HOL existential quantifier.x

assertion 93: if the goal has a term of type “real”?

assertion 10: the context has a related recursive simplivication rule?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
"sep a [] = []" |
"sep a [x] = [x]" |

("sep a (x#y#zs) = x # a # sep a (y#zs)")

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

assertion 27: if the outermost constant is the HOL equality? /
I quantifier.x

assertion 32: if the outermost constant is the HOL existenti
assertion 93: if the goal has a term of type “real”?

assertion 10: the context has a related recursive simplivication rule?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
"sep a [] = []" |
"sep a [x] = [x]" |

("sep a (x#y#zs) = x # a # sep a (y#zs)")

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier.x
assertion 93: if the goal has a term of type “real”? X

v

assertion 10: the context has a related recursive simplivication rule?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
"sep a [] = []" |
"sep a [x] = [x]" |

("sep a (x#y#zs) = x # a # sep a (y#zs)")

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

I quantlflerx

assertion 10: the context has a related recursive simpliiication rule’?
assertion 58: the context has a constant defined with the “fun” keyword?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL eX|stentF1

assertion 93: if the goal has a term of type “real”?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
"sep a [] = []" |
"sep a [x] = [x]" |

("sep a (x#y#zs) = x # a # sep a (y#zs)")

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

I quantlflerx

assertion 10: the context has a related recursive simpliiication rule’?
assertion 58: the context has a constant defined with the “fun” keywor

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL eX|stentF1

assertion 93: if the goal has a term of type “real”?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
"sep a [] = []" |
"sep a [x] = [x]" |

("sep a (x#y#zs) = x # a # sep a (y#zs)")

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

I quantlflerx

assertion 10: the context has a related recursive simpliiication rule’?
assertion 58: the context has a constant defined with the “fun” keywor

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL eX|stentF1

assertion 93: if the goal has a term of type “real”?

resulting feature vector: [...,1,...,1,...0,...,1,...0,...]

| L

10th 27th 32nd 58th 93rd

What assertions | wanted to write / wrote...
lemma "map T (sep x xs) = sep (f x) (map f xs)"
apply (induct x xs rule: sep.induct)

What assertions | wanted to write / wrote...
lemma "map f (sep x xs) = sep (f x) (map f xs)"
Assertion 01: apply (induct x xs rule: sep.induct)
If the induct method uses an auxiliary lemma (sep.induct) ...

check if the induction variables (x and xs) are arguments of the constant (sep)
that has an auxiliary lemma (sep.induct).

What assertions | wanted to write / wrote...
lemma "map T (sep x xs) = sep (f x) (map f xs)"
Assertion 01: apply (induct x xs rule: sep.induct)

If the induct method uses an auxiliary lemma (sep.induct) ...

check if the induction variables (x and xs) are arguments of the constant (sep)

that has an auxiliary lemma (sep.induct).
ents relative to C€

variables (X and xs) apP

]
rtain constants:

oal!
ear multiple >

imes in the
position of argum um

Induction

What assertions | wanted to write / wrote...

lemma "map T (sep x xs) = sep (f x) (map f xs)"
Assertion 01: apply (induct x xs rule: sep.induct)

If the induct method uses an auxiliary lemma (sep.induct) ...

check if the induction variables (x and xs) are arguments of the constant (sep)
that has an auxiliary lemma (sep.induct).

ive to ce
uments relative
; bles (x and xs) appear

: ts!
rtain constan _ : oal!
position of ar multiple times in the 9

Induction varia -
primrec my append :: "'a list = 'a list = 'a list" (infixr "@@" ©

append Nil: "[] @@ ys = ys" |
append Cons: "(x#xs) @@ ys = x # xS @@ ys"

lemma "(x @@ y) @@ z = x @@ (y @@ z)" apply (induct x)
apply auto

What assertions | wanted to write / wrote...
lemma "map T (sep x xs) = sep (f x) (map f xs)"
Assertion 01: apply (induct x xs rule: sep.induct)

If the induct method uses an auxiliary lemma (sep.induct) ...
check if the induction variables (x and xs) are arguments of the constant (sep)

that has an auxiliary lemma (sep.induct). . nts!
ments relative torcere o ltiple times In the goal!
position of argu oles (x - 1d xs) appear nultip
: Induction va o
primrec my append :: "'a list = 'a list = 'a list" (infixr "@@" 6.
append_Nil: ll[] @@ ys — yS" I
append_ConS: "(X#XxSs) @@ ys = X # xS @@ ‘;."'S"

lemma "(x @@ v) @@ z = x @@ (y @@ z)" apply (induct x)

Assertion 02: apply auto

Do induction on argument number i if the function is defined by recursion in
argument number i?

What assertions | wanted to write / wrote...
lemma "map T (sep x xs) = sep (f x) (map f xs)"
Assertion 01: apply (induct x xs rule: sep.induct)

If the induct method uses an auxiliary lemma (sep.induct) ...

check if the induction variables (x and xs) are arguments of the constant (sep)

that has an auxiliary lemma (sep.induct). tain constants!

\
relative to C€ _ . os in the goal!
position of argumer\’tﬁ;ab‘es (x and xs) appear multiple tim
: Induction var o
primrec my append :: "'a list = 'a list = 'a list" (infixr "@@" 6!
append Nil: "[] @@ ys = ys" |
append Cons: "(x#xs) @@ ys = x # xS @@ ys"

lemma "(x @@ y) @@ z = x @@ (y @@ z)" apply (i1nduct x)

Assertion 02: apply auto

Do induction on argument number i if the function is defined by recursion in

argument number i? -
| deﬁn'\t'\on of consta

What assertions | wanted to write / wrote...
lemma "map T (sep x xs) = sep (f x) (map f xs)"
Assertion 01: apply (induct x xs rule: sep.induct)

If the induct method uses an auxiliary lemma (sep.induct) ...

check if the induction variables (x and xs) are arguments of the constant (sep)

that has an auxiliary lemma (sep.induct). tain constants!

|ative to C€ _ < in the goal!
osition of arguments_. re <) appear * ultiple time
’ Induction variables (x an
primrec my append :: "'a list = 'a list = 'a list" (infixr "@@" 6
append_Nil: ll[] @@ ys — ysu I
append Cons: "(x#xs) @@ ys = x # xs @@ ys"

lemma "(x @@ y) @@ z = x @@ (y @@ z)" apply (i1nduct x)

Assertion 02: apply auto

Do induction on argument number i if the function is defined by recursion in
argument number i? p constants\.

. _ian O
Assertion03: gefinition
Are induction variables appear at the deepest level in the syntax tree?

What assertions | wanted to write / wrote...
lemma "map T (sep x xs) = sep (f x) (map f xs)"
Assertion 01: apply (induct x xs rule: sep.induct)

If the induct method uses an auxiliary lemma (sep.induct) ...

check if the induction variables (x and xs) are arguments of the constant (sep)

that has an auxiliary lemma (sep.induct). tain constants!

\
relative to C€ _ imes in the goal!
position o e“rgumem::l’ables (x and xs) appear multiple U
: Induction va o
primrec my append :: "'a list = 'a list = 'a list" (infixr "@@" 6.
append Nil: "[] @@ ys = ys" |
append_ConS v U (X#XxS) @@ ysS = X # XS @@ ys "

lemma "(x @@ v) @@ z = x @@ (y @@ z)" apply (induct x)

Assertion 02: apply auto

Do induction on argument number i if the function is defined by recursion in
argument number i? p constams\.

. _ian O
Assertion03: gefinition
Are induction variables appear at the deepest level in the syntax tree?

depth?

AP

What assertions | wanted to write / wrote...
lemma "map T (sep x xs) = sep (f x) (map f xs)"
Assertion 01: apply (induct x xs rule: sep.induct)

If the induct method uses an auxiliary lemma (sep.induct) ...

check if the induction variables (x and xs) are arguments of the constant (sep)

that has an auxiliary lemma (sep.induct). tain constants!

\
relative to C€ _ imes in the goal!
position o e“rgumem::l’ables (x and xs) appear multiple U
: Induction va o
primrec my append :: "'a list = 'a list = 'a list" (infixr "@@" 6.
append Nil: "[] @@ ys = ys" |
append_ConS v U (X#XxS) @@ ysS = X # XS @@ ys "

lemma "(x @@ v) @@ z = x @@ (y @@ z)" apply (induct x)

Assertion 02: apply auto

Do induction on argument number i if the function is defined by recursion in
argument number i? p constams\.

. _ian O
Assertion03: gefinition
Are induction variables appear at the deepest level in the syntax tree?

depth? RzW

- \ Z ==

git clone https://github.com/data61/PSL

Time

git clone https://github.com/data61/PSL

git clone https://github.com/data61/PSL

git clone https://github.com/data61/PSL

git clone https://github.com/data61/PSL

git clone https://github.com/data61/PSL

At the time of development (2017), PSL does
not know about

- user defined constants (e.g. “sep”) or

- user defined proof strategies (e.g. DInd).

