
Towards Machine Learning
Induction for Isabelle/HOL

Yutaka Nagashima

University of Innsbruck

Czech Technical University

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466).

git clone https://github.com/data61/PSL

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466).

?

git clone https://github.com/data61/PSL

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466).

?
Who is Isabelle?

git clone https://github.com/data61/PSL

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466).

?
Why induction?

Who is Isabelle?

git clone https://github.com/data61/PSL

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466).

?
Why induction?

Who is Isabelle?

git clone https://github.com/data61/PSL

https://www.logic.at/staff/gramlich/
Prof. Bernhard Gramlich

ITP (Inductive Theorem Proving)
problems are at the heart of many
verification and reasoning tasks in

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466).

?
Why induction?

Who is Isabelle?

git clone https://github.com/data61/PSL

we are convinced that substantial
progress in ITP will take time.

https://www.logic.at/staff/gramlich/
Prof. Bernhard Gramlich

ITP (Inductive Theorem Proving)
problems are at the heart of many
verification and reasoning tasks in

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466).

?
Why induction?

Who is Isabelle?

git clone https://github.com/data61/PSL

we are convinced that substantial
progress in ITP will take time.

https://www.logic.at/staff/gramlich/
Prof. Bernhard Gramlich

ITP (Inductive Theorem Proving)
problems are at the heart of many
verification and reasoning tasks in

spectacular breakthroughs are
unrealistic, in view of the enormous

problems and the inherent difficulty of
inductive theorem proving.

Strategic Issues, Problems and Challenges in Inductive Theorem Proving

Why induction?
we are convinced that substantial

progress in ITP will take time.

ITP (Inductive Theorem Proving)
problems are at the heart of many
verification and reasoning tasks in

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466).

?
Who is Isabelle?

git clone https://github.com/data61/PSL

spectacular breakthroughs are
unrealistic, in view of the enormous

problems and the inherent difficulty of
inductive theorem proving.

https://www.logic.at/staff/gramlich/
Prof. Bernhard Gramlich

Strategic Issues, Problems and Challenges in Inductive Theorem Proving

Challenge accepted!

Why induction?
we are convinced that substantial

progress in ITP will take time.

ITP (Inductive Theorem Proving)
problems are at the heart of many
verification and reasoning tasks in

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466).

?
Who is Isabelle?

git clone https://github.com/data61/PSL

spectacular breakthroughs are
unrealistic, in view of the enormous

problems and the inherent difficulty of
inductive theorem proving.

https://www.logic.at/staff/gramlich/
Prof. Bernhard Gramlich

Strategic Issues, Problems and Challenges in Inductive Theorem Proving

Challenge accepted!

The time has
come!

Why induction?
we are convinced that substantial

progress in ITP will take time.

ITP (Inductive Theorem Proving)
problems are at the heart of many
verification and reasoning tasks in

Towards Machine Learning
Induction for Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466).

?
Who is Isabelle?

git clone https://github.com/data61/PSL

spectacular breakthroughs are
unrealistic, in view of the enormous

problems and the inherent difficulty of
inductive theorem proving.

https://www.logic.at/staff/gramlich/
Prof. Bernhard Gramlich

Strategic Issues, Problems and Challenges in Inductive Theorem Proving

Challenge accepted!

The time has
come!

…or is coming
soon.

Interactive theorem proving with
Isabelle/HOL

git clone https://github.com/data61/PSL

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

git clone https://github.com/data61/PSL

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

subgoals

error-message

git clone https://github.com/data61/PSL

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

subgoals

error-message

git clone https://github.com/data61/PSL

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

no sub-goal!subgoals

error-message

git clone https://github.com/data61/PSL

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

no sub-goal!subgoals

error-message

git clone https://github.com/data61/PSL

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

no sub-goal!subgoals

error-message

git clone https://github.com/data61/PSL

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

no sub-goal!subgoals

error-message

git clone https://github.com/data61/PSL

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

no sub-goal!subgoals

error-message

git clone https://github.com/data61/PSL

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

no sub-goal!subgoals

error-message
 It's blatantly clear
 You stupid machine, that what
 I tell you is true
 (Michael Norrish)

git clone https://github.com/data61/PSL

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

no sub-goal!subgoals

error-message
 It's blatantly clear
 You stupid machine, that what
 I tell you is true
 (Michael Norrish)

git clone https://github.com/data61/PSL

DEMO!

goal

Dynamic (Induct)

Auto

IsSolved

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

apply (induct xs rule: Demo.sep.induct)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

apply (induct xs rule: Demo.sep.induct)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

apply (induct xs rule: Demo.sep.induct)
apply (auto)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

apply (induct xs rule: Demo.sep.induct)
apply (auto)

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

apply (induct xs rule: Demo.sep.induct)
apply (auto)

done

git clone https://github.com/data61/PSL

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

apply (induct xs rule: Demo.sep.induct)
apply (auto)

done

git clone https://github.com/data61/PSL

Try_Hard: the default strategy

strategy Basic =
 Ors [
 Auto_Solve,
 Blast_Solve,
 FF_Solve,
 Thens [IntroClasses, Auto_Solve],
 Thens [Transfer, Auto_Solve],
 Thens [Normalization, IsSolved],
 Thens [DInduct, Auto_Solve],
 Thens [Hammer, IsSolved],
 Thens [DCases, Auto_Solve],
 Thens [DCoinduction, Auto_Solve],
 Thens [Auto, RepeatN(Hammer), IsSolved],
 Thens [DAuto, IsSolved]]

strategy Try_Hard =
Ors [Thens [Subgoal, Basic],
 Thens [DInductTac, Auto_Solve],
 Thens [DCaseTac, Auto_Solve],
 Thens [Subgoal, Advanced],
 Thens [DCaseTac, Solve_Many],
 Thens [DInductTac, Solve_Many]]

16 percentage point performance
improvement compared to sledgehammer

PaMpeR: Proof Method Recommendation

but the search space explodes

git clone https://github.com/data61/PSL

preparation phase

recommendation phase

How does
PaMpeR work?

preparation phase

recommendation phase

? proof
state

proof
engineer

How does
PaMpeR work?

large proof corpora

AFP and standard library

preparation phase

recommendation phase

? proof
state

proof
engineer

How does
PaMpeR work?

large proof corpora

AFP and standard library

Archive of Formal Proofs (https://www.isa-afp.org)

preparation phase

recommendation phase

? proof
state

proof
engineer

How does
PaMpeR work?

large proof corpora

AFP and standard library

preparation phase

recommendation phase

? proof
state

proof
engineer

How does
PaMpeR work?

full feature extractor

6021 CPU hours

108 assertions

large proof corpora

AFP and standard library

preparation phase

recommendation phase

? proof
state

proof
engineer

How does
PaMpeR work?

full feature extractor

6021 CPU hours

108 assertions

:: (tactic_name, [bool])

database (425334 data points)

large proof corpora

AFP and standard library

preprocess

decision tree construction

preparation phase

recommendation phase

? proof
state

proof
engineer

How does
PaMpeR work?

full feature extractor

6021 CPU hours

108 assertions

:: (tactic_name, [bool])

database (425334 data points)

large proof corpora

AFP and standard library

preprocess

decision tree construction

preparation phase

recommendation phase fast feature extractor

? proof
state

proof
engineer

How does
PaMpeR work?

full feature extractor

6021 CPU hours

108 assertions

:: (tactic_name, [bool])

database (425334 data points)

large proof corpora

AFP and standard library

preprocess

decision tree construction

feature vector

preparation phase

recommendation phase fast feature extractor

? proof
state

proof
engineer

How does
PaMpeR work?

full feature extractor

6021 CPU hours

108 assertions

:: (tactic_name, [bool])

database (425334 data points)

large proof corpora

AFP and standard library

preprocess

decision tree construction

feature vector

proof method
recommendation

lookup

preparation phase

recommendation phase fast feature extractor

? proof
state

proof
engineer

How does
PaMpeR work?

full feature extractor

6021 CPU hours

108 assertions

:: (tactic_name, [bool])

database (425334 data points)

large proof corpora

AFP and standard library

preprocess

decision tree construction

feature vector

proof method
recommendation

lookup

preparation phase

recommendation phase fast feature extractor

? proof
state

proof
engineer

How does
PaMpeR work?

full feature extractor

6021 CPU hours

108 assertions

:: (tactic_name, [bool])

database (425334 data points)

large proof corpora

AFP and standard library

?

AITP2018 review

?
anonymous

reviewer

git clone https://github.com/data61/PSL

AITP2018 review
Proof Method Recommendation, PaMpeR!

?
anonymous

reviewer

git clone https://github.com/data61/PSL

AITP2018 review
Proof Method Recommendation, PaMpeR!

I have doubts about various approaches
proposed in the paper.

?
anonymous

reviewer

git clone https://github.com/data61/PSL

AITP2018 review
Proof Method Recommendation, PaMpeR!

I have doubts about various approaches
proposed in the paper.

?
anonymous

reviewer

git clone https://github.com/data61/PSL

New users of Isabelle are facing many
challenges from

- writing their first definitions,
- stating suitable theorem statements, and
- producing properly structured proofs.

AITP2018 review
Proof Method Recommendation, PaMpeR!

I have doubts about various approaches
proposed in the paper.

?
anonymous

reviewer

git clone https://github.com/data61/PSL

New users of Isabelle are facing many
challenges from

- writing their first definitions,
- stating suitable theorem statements, and
- producing properly structured proofs.

AITP2018 review
Proof Method Recommendation, PaMpeR!

I have doubts about various approaches
proposed in the paper.

Proof methods are merely the bits at the bottom of that.

?
anonymous

reviewer

git clone https://github.com/data61/PSL

New users of Isabelle are facing many
challenges from

- writing their first definitions,
- stating suitable theorem statements, and
- producing properly structured proofs.

AITP2018 review
Proof Method Recommendation, PaMpeR!

I have doubts about various approaches
proposed in the paper.

Proof methods are merely the bits at the bottom of that.

?
anonymous

reviewer

I was writing how to prove not how to specify!

git clone https://github.com/data61/PSL

New users of Isabelle are facing many
challenges from

- writing their first definitions,
- stating suitable theorem statements, and
- producing properly structured proofs.

AITP2018 review
Proof Method Recommendation, PaMpeR!

I have doubts about various approaches
proposed in the paper.

Proof methods are merely the bits at the bottom of that.

?
anonymous

reviewer

I was writing how to prove not how to specify!

git clone https://github.com/data61/PSL

New users of Isabelle are facing many
challenges from

- writing their first definitions,
- stating suitable theorem statements, and
- producing properly structured proofs.

AITP2018 review
Proof Method Recommendation, PaMpeR!

I have doubts about various approaches
proposed in the paper.

Proof methods are merely the bits at the bottom of that.

?
anonymous

reviewer

I was writing how to prove not how to specify!

Proof Goal Transformer, PGT!

git clone https://github.com/data61/PSL

PSL with PGT

PGT

git clone https://github.com/data61/PSL

PSL with PGT

PGT strategy

proof goal sub-optimal
for proof automation

context

PGT

git clone https://github.com/data61/PSL

PSL with PGT

PGT strategy

proof goal sub-optimal
for proof automation

context

PGT

tactic / sub-tool

proof goal context

git clone https://github.com/data61/PSL

PSL with PGT

PGT strategy

proof goal sub-optimal
for proof automation

context

proved theorem /
subgoals / message

PGT

tactic / sub-tool

proof goal context

git clone https://github.com/data61/PSL

PSL with PGT

PGT strategy

proof goal sub-optimal
for proof automation

context

proof for the original goal,
and auxiliary lemma

optimal for proof automation

proved theorem /
subgoals / message

PGT

tactic / sub-tool

proof goal context

git clone https://github.com/data61/PSL

PSL with PGT

PGT strategy

proof goal sub-optimal
for proof automation

context

proof for the original goal,
and auxiliary lemma

optimal for proof automation

proved theorem /
subgoals / message

PGT

tactic / sub-tool

proof goal context

DEMO!

git clone https://github.com/data61/PSL

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

git clone https://github.com/data61/PSL

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

git clone https://github.com/data61/PSL

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

git clone https://github.com/data61/PSL

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

git clone https://github.com/data61/PSL

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

git clone https://github.com/data61/PSL

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

git clone https://github.com/data61/PSL

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

git clone https://github.com/data61/PSL

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

git clone https://github.com/data61/PSL

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

git clone https://github.com/data61/PSL

Success story
git clone https://github.com/data61/PSL

PSL can find how to apply
induction for easy problems.

Success story
git clone https://github.com/data61/PSL

PSL can find how to apply
induction for easy problems.

PaMpeR recommends which
proof methods to use.

Success story
git clone https://github.com/data61/PSL

PSL can find how to apply
induction for easy problems.

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

Success story
git clone https://github.com/data61/PSL

PSL can find how to apply
induction for easy problems.

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

CADE2017

Success story
git clone https://github.com/data61/PSL

PSL can find how to apply
induction for easy problems.

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

CADE2017

ASE2018

Success story
git clone https://github.com/data61/PSL

PSL can find how to apply
induction for easy problems.

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

CADE2017

ASE2018

CICM2018
(best system award)

PSL can find how to apply
induction for easy problems.

Too good to be true?
git clone https://github.com/data61/PSL

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

PSL can find how to apply
induction for easy problems.

Too good to be true?
git clone https://github.com/data61/PSL

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

only if PSL compl
etes a proof searc

h

only if PSL with P
GT completes a

proof search

PSL can find how to apply
induction for easy problems.

Too good to be true?
git clone https://github.com/data61/PSL

but PaMpeR does
 not recommend

arguments for pr
oof methods

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

only if PSL compl
etes a proof searc

h

only if PSL with P
GT completes a

proof search

PSL can find how to apply
induction for easy problems.

Too good to be true?
git clone https://github.com/data61/PSL

but PaMpeR does
 not recommend

arguments for pr
oof methods

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

only if PSL compl
etes a proof searc

h

only if PSL with P
GT completes a

proof search

Recommend how to
apply induction without

completing a proof.

PSL can find how to apply
induction for easy problems.

Too good to be true?
git clone https://github.com/data61/PSL

but PaMpeR does
 not recommend

arguments for pr
oof methods

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

only if PSL compl
etes a proof searc

h

only if PSL with P
GT completes a

proof search

Recommend how to
apply induction without

completing a proof.
MeLoId: Machine

Learning Induction

How does
MeLoId work?

[apply(induct s),
 apply(induct t),
 apply(induct u),
 apply(induct s t arbitrary: u), …]

decision tree
construction

lookup

preparation phase

recommendation phase fast feature extractor

? proof
state

proof
engineer

full feature
extractor

active mining

about 40 assertions
written in ML

large proof corpora

AFP and standard library

lemma “foo x y = bar x y”
apply(induct x arbitrary: y)

[(apply(induct x arbitrary: y), used),
 (apply(induct y arbitrary: x), not),
 (apply(induct arbitrary: y), used),
 (apply(induct x rule: bar.induct), not),…]

[([1,0,0,1,…1], used),
 ([0,1,0,1,…1], not),
 ([1,1,0,0,…1], used),
 ([0,1,0,0,…1], not), …]

lemma “f s t ==> g s u”

Dynamic
(Induct)

[[1,1,0,1,…1],
 [0,0,0,1,…1],
 [1,1,1,0,…1],
 [1,1,0,1,…1], …]

[(0.3, apply(induct s t arbitrary: u))
 (0.2, apply(induct s t)),
 (0.15, apply(induct t arbitrary: u)),
 (0.11, apply(induct u)), …]

How does
MeLoId work?

[apply(induct s),
 apply(induct t),
 apply(induct u),
 apply(induct s t arbitrary: u), …]

decision tree
construction

lookup

preparation phase

recommendation phase fast feature extractor

? proof
state

proof
engineer

full feature
extractor

active mining

about 40 assertions
written in ML

large proof corpora

AFP and standard library

lemma “foo x y = bar x y”
apply(induct x arbitrary: y)

[(apply(induct x arbitrary: y), used),
 (apply(induct y arbitrary: x), not),
 (apply(induct arbitrary: y), used),
 (apply(induct x rule: bar.induct), not),…]

[([1,0,0,1,…1], used),
 ([0,1,0,1,…1], not),
 ([1,1,0,0,…1], used),
 ([0,1,0,0,…1], not), …]

lemma “f s t ==> g s u”

Dynamic
(Induct)

[[1,1,0,1,…1],
 [0,0,0,1,…1],
 [1,1,1,0,…1],
 [1,1,0,1,…1], …]

[(0.3, apply(induct s t arbitrary: u))
 (0.2, apply(induct s t)),
 (0.15, apply(induct t arbitrary: u)),
 (0.11, apply(induct u)), …]

Writing useful assertions in ML is very tricky.
=> Domain specific language for writing assertions!

How does
MeLoId work?

[apply(induct s),
 apply(induct t),
 apply(induct u),
 apply(induct s t arbitrary: u), …]

decision tree
construction

lookup

preparation phase

recommendation phase fast feature extractor

? proof
state

proof
engineer

full feature
extractor

active mining

about 40 assertions
written in ML

large proof corpora

AFP and standard library

lemma “foo x y = bar x y”
apply(induct x arbitrary: y)

[(apply(induct x arbitrary: y), used),
 (apply(induct y arbitrary: x), not),
 (apply(induct arbitrary: y), used),
 (apply(induct x rule: bar.induct), not),…]

[([1,0,0,1,…1], used),
 ([0,1,0,1,…1], not),
 ([1,1,0,0,…1], used),
 ([0,1,0,0,…1], not), …]

lemma “f s t ==> g s u”

Dynamic
(Induct)

[[1,1,0,1,…1],
 [0,0,0,1,…1],
 [1,1,1,0,…1],
 [1,1,0,1,…1], …]

[(0.3, apply(induct s t arbitrary: u))
 (0.2, apply(induct s t)),
 (0.15, apply(induct t arbitrary: u)),
 (0.11, apply(induct u)), …]

Writing useful assertions in ML is very tricky.
=> Domain specific language for writing assertions!

WIP!

Thank you!git clone https://github.com/data61/PSL

Thank you!
Leave a star at
GitHub for PSL!

git clone https://github.com/data61/PSL

Thank you!
Leave a star at
GitHub for PSL!

git clone https://github.com/data61/PSL

Let’s write a review paper
 “AITP deserves High-Performance Computing, Too!”

Thank you!
Leave a star at
GitHub for PSL!

git clone https://github.com/data61/PSL

Let’s write a review paper
 “AITP deserves High-Performance Computing, Too!”

PaMpeR’s feature
extractor?

Time

git clone https://github.com/data61/PSL

Time

1986~ Isabelle

git clone https://github.com/data61/PSL

Time

1986~ Isabelle

2004~ AFP

git clone https://github.com/data61/PSL

Time

1986~ Isabelle

2004~ AFP

2017~ PaMpeR

git clone https://github.com/data61/PSL

Time

1986~ Isabelle

2004~ AFP

2017~ PaMpeR

2018~ more articles
in the AFP

git clone https://github.com/data61/PSL

Time

1986~ Isabelle

2004~ AFP

2017~ PaMpeR

2018~ more articles
in the AFP

2018 PaMpeR’s
data extraction

git clone https://github.com/data61/PSL

Time

1986~ Isabelle

2004~ AFP

2017~ PaMpeR

2018~ more articles
in the AFP

2019 definition of the “sep”
function

2018 PaMpeR’s
data extraction

git clone https://github.com/data61/PSL

Time

1986~ Isabelle

2004~ AFP

2017~ PaMpeR

2018~ more articles
in the AFP

2019 definition of the “sep”
function

2018 PaMpeR’s
data extraction

lemma “map f (sep x xs) = sep
(f x) (map f xs)"

git clone https://github.com/data61/PSL

Time

1986~ Isabelle

2004~ AFP

2017~ PaMpeR

2018~ more articles
in the AFP

2019 definition of the “sep”
function

2018 PaMpeR’s
data extraction

lemma “map f (sep x xs) = sep
(f x) (map f xs)"

AITP2019
which_method?

git clone https://github.com/data61/PSL

Time

1986~ Isabelle

2004~ AFP

2017~ PaMpeR

2018~ more articles
in the AFP

2019 definition of the “sep”
function

2018 PaMpeR’s
data extraction

lemma “map f (sep x xs) = sep
(f x) (map f xs)"

AITP2019
which_method?PaMpeR’s feature extractor has to

be able to analyze things (e.g.
“sep”) that do not exist yet!

git clone https://github.com/data61/PSL

Time

1986~ Isabelle

2004~ AFP

2017~ PaMpeR

2018~ more articles
in the AFP

2019 definition of the “sep”
function

2018 PaMpeR’s
data extraction

lemma “map f (sep x xs) = sep
(f x) (map f xs)"

AITP2019
which_method?

DEMO!

PaMpeR’s feature extractor has to
be able to analyze things (e.g.
“sep”) that do not exist yet!

git clone https://github.com/data61/PSL

Feature extractor?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Feature extractor?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?
assertion 93: if the goal has a term of type “real”?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?
assertion 93: if the goal has a term of type “real”?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

assertion 10: the context has a related recursive simplification rule?

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?
assertion 93: if the goal has a term of type “real”?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

assertion 10: the context has a related recursive simplification rule?

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?
assertion 93: if the goal has a term of type “real”?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

assertion 10: the context has a related recursive simplification rule?

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?
assertion 93: if the goal has a term of type “real”?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

assertion 10: the context has a related recursive simplification rule?

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?
assertion 93: if the goal has a term of type “real”?

assertion 58: the context has a constant defined with the “fun” keyword?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

assertion 10: the context has a related recursive simplification rule?

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?
assertion 93: if the goal has a term of type “real”?

assertion 58: the context has a constant defined with the “fun” keyword?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

assertion 10: the context has a related recursive simplification rule?

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?
assertion 93: if the goal has a term of type “real”?

assertion 58: the context has a constant defined with the “fun” keyword?

[…,1,…,1,…0,…,1,…0,…]

10th 27th 32nd 58th 93rd

resulting feature vector:

What assertions I wanted to write / wrote…

What assertions I wanted to write / wrote…

check if the induction variables (x and xs) are arguments of the constant (sep)
that has an auxiliary lemma (sep.induct).

If the induct method uses an auxiliary lemma (sep.induct) …
Assertion 01:

What assertions I wanted to write / wrote…

check if the induction variables (x and xs) are arguments of the constant (sep)
that has an auxiliary lemma (sep.induct).

If the induct method uses an auxiliary lemma (sep.induct) …
Assertion 01:

position of arguments relative to certain constants!

Induction variables (x and xs) appear multiple times in the goal!

What assertions I wanted to write / wrote…

check if the induction variables (x and xs) are arguments of the constant (sep)
that has an auxiliary lemma (sep.induct).

If the induct method uses an auxiliary lemma (sep.induct) …
Assertion 01:

position of arguments relative to certain constants!

Induction variables (x and xs) appear multiple times in the goal!

What assertions I wanted to write / wrote…

check if the induction variables (x and xs) are arguments of the constant (sep)
that has an auxiliary lemma (sep.induct).

If the induct method uses an auxiliary lemma (sep.induct) …
Assertion 01:

Assertion 02:
Do induction on argument number i if the function is defined by recursion in
argument number i?

position of arguments relative to certain constants!

Induction variables (x and xs) appear multiple times in the goal!

What assertions I wanted to write / wrote…

check if the induction variables (x and xs) are arguments of the constant (sep)
that has an auxiliary lemma (sep.induct).

If the induct method uses an auxiliary lemma (sep.induct) …
Assertion 01:

Assertion 02:
Do induction on argument number i if the function is defined by recursion in
argument number i?

definition of constants!

position of arguments relative to certain constants!

Induction variables (x and xs) appear multiple times in the goal!

What assertions I wanted to write / wrote…

check if the induction variables (x and xs) are arguments of the constant (sep)
that has an auxiliary lemma (sep.induct).

If the induct method uses an auxiliary lemma (sep.induct) …
Assertion 01:

Assertion 02:
Do induction on argument number i if the function is defined by recursion in
argument number i?

Assertion03:
Are induction variables appear at the deepest level in the syntax tree?

definition of constants!

position of arguments relative to certain constants!

Induction variables (x and xs) appear multiple times in the goal!

What assertions I wanted to write / wrote…

check if the induction variables (x and xs) are arguments of the constant (sep)
that has an auxiliary lemma (sep.induct).

If the induct method uses an auxiliary lemma (sep.induct) …
Assertion 01:

Assertion 02:
Do induction on argument number i if the function is defined by recursion in
argument number i?

Assertion03:
Are induction variables appear at the deepest level in the syntax tree?

definition of constants!

depth?

un-currying!

position of arguments relative to certain constants!

Induction variables (x and xs) appear multiple times in the goal!

What assertions I wanted to write / wrote…

check if the induction variables (x and xs) are arguments of the constant (sep)
that has an auxiliary lemma (sep.induct).

If the induct method uses an auxiliary lemma (sep.induct) …
Assertion 01:

Assertion 02:
Do induction on argument number i if the function is defined by recursion in
argument number i?

Assertion03:
Are induction variables appear at the deepest level in the syntax tree?

definition of constants!

depth?

un-currying!

position of arguments relative to certain constants!

Induction variables (x and xs) appear multiple times in the goal!

P x y ==> Q y z ==> R z w

Time

git clone https://github.com/data61/PSL

Time
2017: PSL

git clone https://github.com/data61/PSL

Time
2017: PSL

2019: define the “sep” fu
nction

git clone https://github.com/data61/PSL

Time
2017: PSL

2019: define the “sep” fu
nction

git clone https://github.com/data61/PSL

2019: define the “D
Ind” strategy

Time
2017: PSL

2019: define the “sep” fu
nction

2019:

git clone https://github.com/data61/PSL

2019: define the “D
Ind” strategy

Time
2017: PSL

2019: define the “sep” fu
nction

2019:

git clone https://github.com/data61/PSL

At the time of development (2017), PSL does
not know about
- user defined constants (e.g. “sep”) or
- user defined proof strategies (e.g. DInd).

2019: define the “D
Ind” strategy

