Concordia University Hardware Verification Group

Faculty of Engineering and Computer Science

Using Machine Learning to Minimize User Intervention in Theorem Proving based Dynamic Fault Tree Analysis

Yassmeen Elderhalli, Osman Hasan and Sofiène Tahar

Concordia University

Montreal, QC, Canada

AITP 2019

Obergurgl, Austria

April 9, 2019

Outline

- Introduction
- Dynamic Fault Trees
- Proposed Methodology
- Preliminary Results
- Conclusion and Future Work

Failure Analysis

Analyze the effect of components faults on the system failure

Introduction

Methodology

Conclusion and Future Work

Fault Trees

- Graphical representation of faults in the system
- Critical top event which will cause system failure
- The conditions are modeled using fault tree gates

Dynamic Fault Trees

 Critical top event which will cause system failure

 The conditions are modeled using DFT and SFT gates

 DFTs capture the failure dependency using DFT gates (e.g. Priority-And gate)

Introduction

Methodology

Preliminary Results Conclusion and Future Work

Dynamic Fault Trees Gates

5

Ultimate Goal (HOL4)

Work done

- Formalization of DFT in HOL4 Theorem Prover
 - Y. Elderhalli, O. Hasan, W. Ahmad and S. Tahar. "Formal Dynamic Fault Trees Analysis using an Integration of Theorem Proving and Model Checking". *In NASA Formal Methods (NFM-2018).*
 - Y. Elderhalli, W. Ahmad, O. Hasan and S. Tahar "Probabilistic Analysis of Dynamic Fault Trees using HOL Theorem Proving", *In Journal of Applied Logic, 2019 [to appear]*

Dynamic Fault Trees

- Visualization of the cause of failure of the top event based on the basic events
- Dynamic gates in addition to the static gates
 - AND gate
 - OR gate
 - Priority AND gate
 - Functional Dependency gate
 - Spare gate
- Algebraic representation used in the DFT analysis

Dynamic Fault Trees Operators

- DFT temporal operators based on the time of failure:
 - AND

$$d(A \cdot B) = \max(d(A), d(B))$$

• OR

$$d(A + B) = \min(d(A), d(B))$$

Simultaneous

$$d(A \Delta B) = \begin{cases} d(A) & \text{if } d(A) = d(B) \\ +\infty & \text{if } d(A) \neq d(B) \end{cases}$$

Dynamic Fault Trees Operators

• Before

$$d(A \lhd B) = \begin{cases} d(A) & \text{if } d(A) < d(B) \\ +\infty & \text{if } d(A) \ge d(B) \end{cases}$$

• Inclusive Before

$$d(A \leq B) = \begin{cases} d(A) & \text{if } d(A) \leq d(B) \\ +\infty & \text{if } d(A) > d(B) \end{cases}$$

Probabilistic Behavior of Gates

$$\mathcal{P}r \{A \cdot B\} (t) = F_A(t) \times F_B(t)$$

$$\mathcal{P}r \{A+B\} (t) = F_A(t) + F_B(t) - F_A(t) \times F_B(t)$$

$$\mathcal{P}r \{B.(A \lhd B)\} (t) = \int_0^t f_B(u) F_A(u) du$$

$$\mathcal{P}r \ \{Q_{spare}\} \ (t) = \int_0^t \left(\int_v^t f_{B_a}(u,v) du \right) \ f_A(v) dv \ + \ \int_0^t f_A(u) F_{B_d}(u) du$$

Quantitative Analysis

• The probability of the top event can be expressed using the probabilistic Principle of Inclusion Exclusion (PIE)

$$\mathcal{P}r\{TE\} = \mathcal{P}r\{CSS_1 + CSS_2 + \dots + CSS_m\}$$
$$= \sum_{1 \le i \le m} \mathcal{P}r\{CSS_i\} - \sum_{1 \le i < j \le m} \mathcal{P}r\{CSS_i \cdot CSS_j\}$$
$$+ \sum_{1 \le i < j < k \le m} \mathcal{P}r\{CSS_i \cdot CSS_j \cdot CSS_k\}$$
$$+ \dots + (-1)^{m-1} \mathcal{P}r\{CSS_1 \cdot CSS_2 \cdot \dots \cdot CSS_m\}$$

Verification of Probabilistic Behavior of PAND

• The probabilistic failure behavior of the PAND

Theorem. Prob PAND

 $\vdash \forall X Y p f_Y t. rv_gt0_ninfty [X;Y] \land 0 \le t \land prob_space p \land$

indep_var p lborel X lborel Y \land distributed p lborel Y $f_Y \land 0 \le f_Y \land$ measurable_CDF (real o (CDF p (real o X) t)) \land cont_CDF (real o (CDF p (real o X) t)) \Rightarrow (prob p (DFT_event p (Y . (X \lhd Y) t) = $\int_0^t f_Y(y) \times F_X(y) dy$)

Defines a density

function for Y

Introduction

Algebraic Simplification Theorems

- Theorems needed to reduce the expression of the top event of the DFT (structure function)
- Many simplification theorems exist¹:
 - Commutativity

 A Δ B = B Δ A

 Associativity

 A + (B + C) = (A + B) + C

 Distributivity

 A. (B + C) = A. B + A. C

1- [G. Merle, "Algebraic modelling of Dynamic Fault Trees, Contribution to Qualitative and Quantitative Analysis", PhD thesis, ENS, France, 2010].

- It consists of:
 - Pumps system

• A reduced structure function is obtained to conduct both qualitative and quantitative analyses.

```
Theorem. Reduced cardiac assist system

\vdash \forall CS SS MA MS MB P B PA PB PS.

(\forall s. ALL_DISTINCT [MA s; MS s; PA s; PB s; PS s]) \Rightarrow

((shared_spare PA PB PS PS) . (shared_spare PB PA PS PS) +

(PAND MS MA) + (HSP MA MB) +

(HSP (FDEP ((CS + SS) P) (FDEP ((CS + SS) B)) =

CS + SS + (MA . (MS \lhd MA)) + MA . MB + P.B + PA . PB. PS)
```


Theorem. Reduced cardiac assist system

⊢ ∀CS SS MA MS MB P B PA PB PS.

 $(\forall s. ALL_DISTINCT [MA s; MS s; PA s; PB s; PS s]) \Rightarrow$

((shared_spare PA PB PS PS) . (shared_spare PB PA PS PS) --

(PAND MS MA) + (HSP MA MB) +

(HSP (FDEP ((CS + SS) P) (FDEP ((CS + SS) B))) =

 $CS + SS + (MA.(MS \lhd MA)) + MA.MB - P.B + PA.PB.PS)$


```
Lemma. Cardiac assist system union_list
 \vdash \forallPA PB PS MS MA MB CS SS P B p t.
 DFT_event p
   (CS + SS + (MA.(MS \lhd MA)) + MA.MB + P.B + PA.PB.PS) t =
 union_list
   [DFT_event p CS t; DFT_event p SS t;
   DFT_event p (MA (MS \lhd MA)) t;
   DFT_event p (MA. MB) t;
   DFT_event p (P. B) t; DFT_event p (PA. PB. PS) t]
```


Theorem. Prob Cardiac assist system

 $\vdash \forall CS SS MA MS MB P B PA PB PS pt f_{MA}$.

F_{MS} is continuous and measurable

 $0 \le t \land prob_space p \land$

ALL_DISTINCT_RV [CS; SS; MA; MS; MB; P; B; PA; PB; PS] p t A

indep_vars_sets [CS; SS; MA; MS; MB; P; B; PA; PB; PS] p t A

distributed p lborel MA $f_{MA} \land 0 \leq f_{MA} \land$

 $cont_CDFF_{MS} \land measurable_CDFF_{MS} \Rightarrow$

Formalization Summary

- DFT gates and simplification theorems
- Probabilistic behavior of DFT gates
- Utilizing the probabilistic PIE in the quantitative analysis leads to having many subgoals
- Intermediate lemmas are verified that follow the same pattern

 Divide the existing theories into training and test sets, similar to Holstep¹, based on certain features, such as input statements

1. C. Kaliszyk, F. Chollet, and C. Szegedy. "Holstep: A machine learning dataset for higherorder logic theorem proving", 2017.

- For DFT conjectures, features are extracted to build ML models such as neural networks
- The ML models will be used to find the suitable premises

TacticToe

- TacticToe¹ is used to record part of DFT theories
- TacticToe is tested with a small subset of intermediate lemmas
- Proof steps were determined for small lemmas not complex theorems

∀A1 A2 A3 A4 A5 A6 p. prob_space p ∧ A1 ∈ events p ∧ A2 ∈ events p ∧ A3 ∈ events p ∧ A4 ∈ events p ∧ A5 ∈ events p ∧ A6 ∈ events p ⇒ A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5 ∩ A6 ∈ events p

RW_TAC bossLib.std_ss [] THEN (MATCH_MP_TAC o REWRITE_RULE [subsets_def] o Q.SPEC `(p_space p, events p)`) ALGEBRA_INTER THEN RW_TAC bossLib.std_ss [] THENL [RW_TAC bossLib.std_ss [EVENTS_ALGEBRA], RW_TAC bossLib.std_ss [EVENTS_INTER]]);

1- In collaboration with Cezary Kaliszyk

Generic Lemmas

- Verifying generic lemmas that can facilitate the learning process¹
- The extreal addition associativity is used with the PIE and other lemmas to reach the final form of the probability of CAS

 \forall L. (¬MEM PosInf L) V (¬MEM NegInf L) ⇒ (FOLDR (λ a b. a + b) 0 L = FOLDL (λ a b. a+b) 0 L)

```
∀A1 A2 A3 A4 A5 A6 A7 A8 A9 A10.
```

 $A1 \neq PosInf \land A2 \neq PosInf \land A3 \neq PosInf \land A4 \neq PosInf \land$

 $A5 \neq PosInf \land A6 \neq PosInf \land A7 \neq PosInf \land A8 \neq PosInf \land$

 $A9 \neq PosInf \land A10 \neq PosInf \Longrightarrow$

(A1 + (A2 + (A3 + (A4 + (A5 + (A6 + (A7 + (A8 + (A9 + A10)))))))) =

A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10)

1- In collaboration with Cezary Kaliszyk

Conclusion

- Verified DFT algebraic analysis using interactive theorem proving
- A methodology to reduce user intervention in the analysis using machine learning techniques
- TacticToe is used with a small subset of DFT theorems

Future Work

- Divide DFT theories into training and testing sets
- Create ML models and use them with the testing set
- Use TacticToe to extract the proof steps that are useful in the proof steps
- Combine both ML models and TacticToe to generate the proof steps required to verify a given conjecture

Future Work

Concordia University Hardware Verification Group

Faculty of Engineering and Computer Science

www.hvg.ece.concordia.ca