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Motivation

ENIGMA:
guiding clause selection in a first-order saturation-based ATP
(E-prover)

Why to use neural networks?

It’s cool and we don’t want to be left behind!
implicit automatic feature extraction

Why maybe not to use them?
Training tends to be more expensive
Evaluation is slow-ish for the task [Loos et al., 2017]
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Recursive Neural Networks and Embeddings

Idea of embeddings:
map logical objects (terms, literals, clauses) into Rn

hope they capture semantics rather than just syntax!

Recursive Neural Networks [Goller and Kuchler, 1996]
recursively follow the inductive definition of logical objects
share sub-network blocks among occurrences of the same
entity

a : Rn

f : Rn → Rn

g : Rn × Rn → Rn

g

f

f

a

a
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Building Blocks of our Network

All under the aligned-signature assumption!

abstracting all first-order variables by a single embedding
single block for every skolem symbol of a specific arity
separate block for every function and predicate
block for negation and equality
“or”-ing LSTM to embed a clause
“and”-ing LSTM to embed the negated conjecture
final FF block taking the clause embedding vC ∈ Rn and the
negated conjecture embedding vThm ∈ Rm and producing a
probability estimate of usefulness:

p(C useful for proving Thm) = σ(final(vC , vThm))

where σ is the sigmoid function, “squashing” R nicely into [0, 1]
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Architecture Parameters and Training

Current neural model parameters:
n = 64
function and predicate symbols are represented by a linear
layer and ReLU6: (min(max(0, x), 6))
conjecture embedding has size m = 16
the final layer is a sequence of linear, ReLU, linear, ReLU, and
linear layers (Rn+m → R

n
2 → R2)

rare symbols are grouped together — we can loosely speaking
obtain a general constant, binary function, . . .

Training:
we use minibatches, where we group together examples that
share the same conjecture and we cache all the representations
obtained in one batch
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Perfect Term Sharing and Caching

Terms in E are perfectly shared:
at most one instance of every possible term in memory
equality test in constant time

Caching of embeddings:
thanks to the chosen architecture (i.e. the recursive nets),
each logical term has a unique embedding
hash table using term pointer as key gives us an efficient cache

å Each term embedded only once!
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Connecting the network with E

Clause selection in E – a recap:
a variety of heuristics for ordering clauses called
clause weight functions
each to govern its own queue
multiple queues combined in a round-robin fashion under some
frequencies: e.g. 3 ∗ fifo + 4 ∗ symbols

New clause weight function based on the NN:
could use the predicted probability values (order by, desc)
however, just yes / no works better!
å Insider knowledge: fifo then breaks the ties!
also, mix NN with the original heuristic
for the best results (we mixed 50-50 in experiments)
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Experimental Setup

Selected benchmark:
MPTP 2078: FOL translation of selected articles from Mizar
Mathematical Library (MML)

Furthermore:
Fix a good E strategy S from the past
10 second time limit
first run S to collect training data from found proofs

solved 1086 out of 2078
which yielded approx 21000 positives and 201000 negatives

force Pytorch to use just single core!
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TPR/TNR: True Positive/Negative Rates

Training Accuracy:

Mlin Mtree Mnn
TPR 90.54% 99.36% 97.82%
TNR 83.52% 93.32% 94.69%

Testing Accuracy:

Mlin Mtree Mnn
TPR 80.54% 83.35% 82.00%
TNR 62.28% 72.60% 76.88%
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Models ATP Performance

S with modelM alone (�) or combined 50-50 (⊕) in 10s

S S �Mlin S �Mtree S �Mnn
solved 1086 1115 1231 1167
unique 0 3 10 3
S+ 0 +119 +155 +114
S− 0 -90 -10 -33

S S ⊕Mlin S ⊕Mtree S ⊕Mnn
solved 1086 1210 1256 1197
unique 0 7 15 2
S+ 0 +138 +173 +119
S− 0 -14 -3 -8



15/16

Smartness and Speed

All Solved Relative Processed Average:
Mlin Mtree Mnn

S� 2.18± 20.35 0.60± 0.98 0.59± 0.75
S⊕ 0.91± 0.58 0.59± 0.36 0.69± 0.94

None Solved Relative Generated Average:
Mlin Mtree Mnn

S� 0.61± 0.52 0.42± 0.38 0.06± 0.08
S⊕ 0.56± 0.35 0.43± 0.35 0.07± 0.09

å without caching, NSRGA of S ⊕Mnn
drops from 7.1 to 3.6 percent of the speed of S
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Conclusion

Summary:
recursive neural networks catching up on gradient boosted
trees for clause selection in E
evaluation speed improved via caching

Still open:
What when symbols are not aligned?
What is the best way of integrating the guidance and why?
Proof state charaterizations for better context.

Thank you for attention!
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