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ENIGMA:

@ guiding clause selection in a first-order saturation-based ATP
(E-prover)

Why to use neural networks?
o It's cool and we don’t want to be left behind!

@ implicit automatic feature extraction

Why maybe not to use them?
@ Training tends to be more expensive

e Evaluation is slow-ish for the task [Loos et al., 2017]
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Recursive Neural Networks and Embeddings

Idea of embeddings:
e map logical objects (terms, literals, clauses) into R”

@ hope they capture semantics rather than just syntax!

Recursive Neural Networks [Goller and Kuchler, 1996]
@ recursively follow the inductive definition of logical objects

@ share sub-network blocks among occurrences of the same

entity

g
a:R”" /\a
f:R"—R"

L — h—

g:R"xR" = R"
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Building Blocks of our Network

All under the aligned-signature assumption!

abstracting all first-order variables by a single embedding
single block for every skolem symbol of a specific arity
separate block for every function and predicate

block for negation and equality

“or'"-ing LSTM to embed a clause

“and"-ing LSTM to embed the negated conjecture

final FF block taking the clause embedding v € R" and the
negated conjecture embedding vyu, € R™ and producing a
probability estimate of usefulness:

p(C useful for proving Thm) = o(final(vc, viam))

where o is the sigmoid function, “squashing” R nicely into [0, 1]



Architecture Parameters and Training

Current neural model parameters:
e n=2064

function and predicate symbols are represented by a linear
layer and ReLU6: (min(max(0, x), 6))

@ conjecture embedding has size m = 16

the final layer is a sequence of linear, RelU, linear, RelLU, and
linear layers (R"*™ — R2 — R2)

rare symbols are grouped together — we can loosely speaking
obtain a general constant, binary function, ...



Architecture Parameters and Training

Current neural model parameters:

e n=2064

@ function and predicate symbols are represented by a linear
layer and ReLU6: (min(max(0, x), 6))

@ conjecture embedding has size m = 16

@ the final layer is a sequence of linear, ReLU, linear, ReLU, and
linear layers (R™™ — R2 — R2)

@ rare symbols are grouped together — we can loosely speaking
obtain a general constant, binary function, ...

Training:
@ we use minibatches, where we group together examples that
share the same conjecture and we cache all the representations
obtained in one batch
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Perfect Term Sharing and Caching

Terms in E are perfectly shared:
@ at most one instance of every possible term in memory

@ equality test in constant time

Caching of embeddings:

@ thanks to the chosen architecture (i.e. the recursive nets),
each logical term has a unique embedding

@ hash table using term pointer as key gives us an efficient cache

w Each term embedded only once!
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Connecting the network with E

Clause selection in E — a recap:

@ a variety of heuristics for ordering clauses called
clause weight functions

@ each to govern its own queue

e multiple queues combined in a round-robin fashion under some
frequencies: e.g. 3 x fifo + 4 x symbols
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Connecting the network with E

Clause selection in E — a recap:

@ a variety of heuristics for ordering clauses called
clause weight functions

@ each to govern its own queue

e multiple queues combined in a round-robin fashion under some
frequencies: e.g. 3 x fifo + 4 x symbols

New clause weight function based on the NN:
@ could use the predicted probability values (order by, desc)
@ however, just yes / no works better!
w |nsider knowledge: fifo then breaks the ties!
@ also, mix NN with the original heuristic
for the best results (we mixed 50-50 in experiments)
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Experimental Setup

Selected benchmark:

o MPTP 2078: FOL translation of selected articles from Mizar
Mathematical Library (MML)

Furthermore:
e Fix a good E strategy S from the past
@ 10 second time limit

e first run S to collect training data from found proofs

o solved 1086 out of 2078
e which yielded approx 21000 positives and 201000 negatives



Experimental Setup

Selected benchmark:

o MPTP 2078: FOL translation of selected articles from Mizar
Mathematical Library (MML)

Furthermore:
e Fix a good E strategy S from the past

@ 10 second time limit
e first run S to collect training data from found proofs

o solved 1086 out of 2078
e which yielded approx 21000 positives and 201000 negatives

@ force Pytorch to use just single corel!



TPR/TNR: True Positive/Negative Rates

@ Training Accuracy:

Mlin Mtree Mnn
TPR | 90.54% 99.36% 97.82%
TNR | 83.52% 93.32% 94.69%

@ Testing Accuracy:

Mlin Mtree Mnn
TPR | 80.54% 83.35% 82.00%
TNR | 62.28% 72.60% 76.88%




Models ATP Performance

e S with model M alone (®) or combined 50-50 () in 10s

S SOMiin | SO Miree | SO M
solved | 1086 1115 1231 1167
unique 0 3 10 3
S+ 0 +119 +155 +114
S— 0 -90 -10 -33

S | SOMiin | SO Mipee | SO Mpn
solved | 1086 1210 1256 1197
unique 0 7 15 2
S+ 0 +138 4173 +119
S— 0 -14 -3 -8




Smartness and Speed

All Solved Relative Processed Average:

‘ Mlin ‘ Mtree ‘ Mnn
S® | 2.184+20.35 | 0.60 +0.98 | 0.59 + 0.75
S® | 091+ 0.58 | 0.59+0.36 | 0.69 + 0.94
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Smartness and Speed

All Solved Relative Processed Average:

‘ Mlin ‘ Mtree ‘ Mnn
S® | 2.184+20.35 | 0.60 +0.98 | 0.59 + 0.75
S® | 091+ 0.58 | 0.59+0.36 | 0.69 + 0.94

None Solved Relative Generated Average:
‘ Mlin ‘ Mtree ‘ Mnn
S® [ 0.61+0.52 [ 0.42+£0.38 | 0.06 £ 0.08

S® | 0.56+0.35 | 0.43+0.35 | 0.07 £0.09

w without caching, NSRGA of S & M,
drops from 7.1 to 3.6 percent of the speed of S



Conclusion

Summary:

@ recursive neural networks catching up on gradient boosted
trees for clause selection in E

@ evaluation speed improved via caching

Still open:
@ What when symbols are not aligned?
@ What is the best way of integrating the guidance and why?

@ Proof state charaterizations for better context.



Conclusion

Summary:

@ recursive neural networks catching up on gradient boosted
trees for clause selection in E

@ evaluation speed improved via caching

Still open:
@ What when symbols are not aligned?
@ What is the best way of integrating the guidance and why?

@ Proof state charaterizations for better context.

Thank you for attention!
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