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“The problem with all
this deep neural stuff is
that it’s slow.”

AITP ‘19 participant, paraphrased

Background



Efficient ATP Context

* Fully automatic provers: “fire and forget”

e Supporting full first-order logic (with equality)
 Historically, little learning from experience

* Instead use efficient calculi and highly-tuned algorithms



Automatic theorem proving: an abstract view

Are we done yet?

No? Ugh, fine.

Pick a Thingy.

Do All the Things™ with your Thingy.
Go to (1)
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What do we want?

* Learn from past experience proving things
* Guide future prover runs based on the knowledge gained
* |deally without affecting “raw” performance too much



Guidance is Hard

* Optimal picking is not decidable in general
e Can work for human problems: human mathematicians exist

* Thingies (formulae, clauses...) generally hostile for learning:
* “Lossy” representations: definitionally not as good as they could be
» “Lossless” representations: better (?), just really difficult.



Guidance is Inefficient (?)

* Direct guidance means adding a heuristic “black box”

e Use it to pick your Thingies better

* Therefore, at least one heuristic call per loop

* If your heuristic does a lot of computation (neurally?), this is slow

* Claim: neural networks are not low-throughput, merely high-latency



A Solution



Desiderata for neural provers

* Proof state must be reasonably small

* Proof state must be human-readable

* Proof state must be independent and self-contained

* Proof state must be capable of evaluation in (data)-parallel



A suitable calculus

» Refutation tableaux (proof state is small, parallel)

* Non-clausal tableaux (proof state is small, human-readable)

* Tableaux without unification (proof state is independent, parallel)
* This is horrible for proof search...
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https://en.wikipedia.org/wiki/Method of analytic tableaux#/media/File:First-order tableau.svg



https://en.wikipedia.org/wiki/Method_of_analytic_tableaux#/media/File:First-order_tableau.svg

Problem: explosive proof search

* Necessarily explosive calculus
 Solution: can be controlled if the heuristic is good enough



Problem: controlling exploitation

* Heuristic guides proof search, but it gets it wrong occasionally
* Proof search might become “stuck” and therefore incomplete
* Must balance exploitation versus exploration

* Solution: Monte-Carlo Tree Search, as used in MonteCoP/rICoP



Selection Expansion Simulation Backpropagation
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https://en.wikipedia.org/wiki/Monte Carlo tree search#/media/File:MCTS (English) - Updated 2017-11-19.svg



https://en.wikipedia.org/wiki/Monte_Carlo_tree_search/media/File:MCTS_(English)_-_Updated_2017-11-19.svg

Problem: deep proofs

* Proofs can be significantly deep with this method

 Solution: apply an existing fast oracle ATP (Z3 with MBQJI) to subgoals
* Sound because each sub-goal is independent of any other

* Could also be any first-order ATP or counter-example finder

* Oracle says:
» “satisfiable”: you messed up, prune this branch
* “unsatisfiable”: great, this subgoal is solved
* “unknown”: keep going...



A Prover Design

* Tableaux search via MCTS

* Fresh nodes placed on a queue, heuristic evaluates in batches
* Heuristic estimates “truthiness” of current subgoal

e Update nodes with scores when they arrive from the heuristic
* Explore other areas in the meantime

* Whack subgoals with a Z3 hammer occasionally, in parallel



Proof Search
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Some advantages

* Common subgoals can be shared

* Quite general: new inference rules, other logics?

 All available CPU/GPU cores utilised

* Possible fast incomplete mode: drop poor branches

* Oracle generates training examples during proof search

* Pluggable oracle — is this a new domain for traditional ATPs?
* Pluggable heuristic — I might make this a competition!



Findings



Engineering

* Relatively simple to implement: one (definitely non-expert) author

* However, parallel DAG traversal/update very difficult to get right!

= 2,000 lines of Rust code
e Batching neural heuristic much more efficient
e 73 quite expensive, but definitely worthwhile
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Mizar benchmark

* MPTP dataset, minimised (“m40” - thanks to Josef Urban)

* A mathematical benchmark: unclear how other domains fare
* Results promising, but Z3 is a strong prover already.

* Apologies for no numbers...



Learning from experience

 Simple database lookup of previously-proved sat/unsat subgoals
proves =5% more, with significant speedup

* Neural heuristic learns to 55% accuracy — surely this can be improved!

* Can bootstrap from a problem set, even if no problems are solved
initially



Conclusions



Results

* Neural ATPs are not necessarily slow, just different

* Need new calculi/provers

 Parallel theorem provers are a necessary evil for the future

* Significant advantages (and disadvantages!) to doing it the stupid way



Future work

* Make sure the thing is sound!

* Evaluation on MPTP

* More training data, better heuristics
e “FOL truthiness” ML competition?

* Engineering for efficiency



Questions



