Towards an Efficient
Architecture for Intelligent
Theorem Provers

Michael Rawson, Giles Reger

University of Manchester, UK

“The problem with all
this deep neural stuff is
that it’s slow.”

AITP ‘19 participant, paraphrased

Background

Efficient ATP Context

* Fully automatic provers: “fire and forget”

e Supporting full first-order logic (with equality)
 Historically, little learning from experience

* Instead use efficient calculi and highly-tuned algorithms

Automatic theorem proving: an abstract view

Are we done yet?

No? Ugh, fine.

Pick a Thingy.

Do All the Things™ with your Thingy.
Go to (1)

Al S

What do we want?

* Learn from past experience proving things
* Guide future prover runs based on the knowledge gained
* |deally without affecting “raw” performance too much

Guidance is Hard

* Optimal picking is not decidable in general
e Can work for human problems: human mathematicians exist

* Thingies (formulae, clauses...) generally hostile for learning:
* “Lossy” representations: definitionally not as good as they could be
» “Lossless” representations: better (?), just really difficult.

Guidance is Inefficient (?)

* Direct guidance means adding a heuristic “black box”

e Use it to pick your Thingies better

* Therefore, at least one heuristic call per loop

* If your heuristic does a lot of computation (neurally?), this is slow

* Claim: neural networks are not low-throughput, merely high-latency

A Solution

Desiderata for neural provers

* Proof state must be reasonably small

* Proof state must be human-readable

* Proof state must be independent and self-contained

* Proof state must be capable of evaluation in (data)-parallel

A suitable calculus

» Refutation tableaux (proof state is small, parallel)

* Non-clausal tableaux (proof state is small, human-readable)

* Tableaux without unification (proof state is independent, parallel)
* This is horrible for proof search...

1 V x.P(x)

2 3 x.(~ P(x) vV 7 P(f(x)))

3 - P(c) v = P(f(c)) 2(3)

(/ P(c) \ 1(V)
7 P(c) = P(‘f(C)) > 3(v)
1(V)

P(f(c))

https://en.wikipedia.org/wiki/Method of analytic tableaux#/media/File:First-order tableau.svg

https://en.wikipedia.org/wiki/Method_of_analytic_tableaux#/media/File:First-order_tableau.svg

Problem: explosive proof search

* Necessarily explosive calculus
 Solution: can be controlled if the heuristic is good enough

Problem: controlling exploitation

* Heuristic guides proof search, but it gets it wrong occasionally
* Proof search might become “stuck” and therefore incomplete
* Must balance exploitation versus exploration

* Solution: Monte-Carlo Tree Search, as used in MonteCoP/rICoP

Selection Expansion Simulation Backpropagation

g g

https://en.wikipedia.org/wiki/Monte Carlo tree search#/media/File:MCTS (English) - Updated 2017-11-19.svg

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search/media/File:MCTS_(English)_-_Updated_2017-11-19.svg

Problem: deep proofs

* Proofs can be significantly deep with this method

 Solution: apply an existing fast oracle ATP (Z3 with MBQJI) to subgoals
* Sound because each sub-goal is independent of any other

* Could also be any first-order ATP or counter-example finder

* Oracle says:
» “satisfiable”: you messed up, prune this branch
* “unsatisfiable”: great, this subgoal is solved
* “unknown”: keep going...

A Prover Design

* Tableaux search via MCTS

* Fresh nodes placed on a queue, heuristic evaluates in batches
* Heuristic estimates “truthiness” of current subgoal

e Update nodes with scores when they arrive from the heuristic
* Explore other areas in the meantime

* Whack subgoals with a Z3 hammer occasionally, in parallel

Proof Search

v x.|P(x)
X2 PV P(A(X)

3 ~P() v|~ P(f(c))
\/—/ P(c) \
~ B

1¥)
“P(c) i(c)) > 3(v)
P(f()) 1Y)

(saturates CPU)

(saturates GPU)

Some advantages

* Common subgoals can be shared

* Quite general: new inference rules, other logics?

 All available CPU/GPU cores utilised

* Possible fast incomplete mode: drop poor branches

* Oracle generates training examples during proof search

* Pluggable oracle — is this a new domain for traditional ATPs?
* Pluggable heuristic — I might make this a competition!

Findings

Engineering

* Relatively simple to implement: one (definitely non-expert) author

* However, parallel DAG traversal/update very difficult to get right!

= 2,000 lines of Rust code
e Batching neural heuristic much more efficient
e 73 quite expensive, but definitely worthwhile

)

(4running, search2orac

(&running, search2hé

result (
.search,

search2heuristic_send,
search2oracle_send,
heuristic2search_receive,
oracle2search_receive,

)

running. (

result

(le] {

Mizar benchmark

* MPTP dataset, minimised (“m40” - thanks to Josef Urban)

* A mathematical benchmark: unclear how other domains fare
* Results promising, but Z3 is a strong prover already.

* Apologies for no numbers...

Learning from experience

 Simple database lookup of previously-proved sat/unsat subgoals
proves =5% more, with significant speedup

* Neural heuristic learns to 55% accuracy — surely this can be improved!

* Can bootstrap from a problem set, even if no problems are solved
initially

Conclusions

Results

* Neural ATPs are not necessarily slow, just different

* Need new calculi/provers

 Parallel theorem provers are a necessary evil for the future

* Significant advantages (and disadvantages!) to doing it the stupid way

Future work

* Make sure the thing is sound!

* Evaluation on MPTP

* More training data, better heuristics
e “FOL truthiness” ML competition?

* Engineering for efficiency

Questions

