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Tactic-level automation:

Idea: Learn from human-written proof scripts

Try to match proof states with the right tactic

Advantage: We can make use of custom made, domain specific
tactics written by clever humans
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Design goals

. User Friendly

Online learning, minimal configuration, works everywhere

. Installation Friendly

No external dependencies

. Integration Friendly

Coq plugin, with minor modifications to Coq

. Maintenance Friendly

Ideally: eventual integration into Coq codebase

Downside: We potentially sacrifice the use of some awesome Machine
Learning algorithms
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Proof Recording:

Ltac, Mtac, SSreflect, ML-tactics, Ltac 2.0?

⇓

Backtracking proof monad

Seems impossible: How do we introspect the monad?

For now, only Ltac recording



Proof Recording:

Ltac, Mtac, SSreflect, ML-tactics, Ltac 2.0?

⇓

Backtracking proof monad

Seems impossible: How do we introspect the monad?

For now, only Ltac recording



Proof Recording:

Ltac, Mtac, SSreflect, ML-tactics, Ltac 2.0?

⇓

Backtracking proof monad

Seems impossible: How do we introspect the monad?

For now, only Ltac recording



Proof Recording:

Ltac, Mtac, SSreflect, ML-tactics, Ltac 2.0?

⇓

Backtracking proof monad

Seems impossible: How do we introspect the monad?

For now, only Ltac recording



Proof Recording:

Ltac, Mtac, SSreflect, ML-tactics, Ltac 2.0?

⇓

Backtracking proof monad

Seems impossible: How do we introspect the monad?

For now, only Ltac recording



Definition left_pad_spec c s n :
{s’ | (forall i, i < n - length s -> get i s’ = Some c)

/\ (forall i, get i s = get (i + (n - length s)) s’)}.
Proof.
exists (left_pad c s n). unfold left_pad.
split.
- intros; rewrite <- append_correct1;

[ rewrite cycle_get
| rewrite cycle_length]; auto.

- intros; etransitivity;
[ apply append_correct2
| rewrite cycle_length; auto].

Qed.



Definition left_pad_spec c s n :
{s’ | (forall i, i < n - length s -> get i s’ = Some c)

/\ (forall i, get i s = get (i + (n - length s)) s’)}.
Proof.
record (exists (left_pad c s n)). record (unfold left_pad).
record (split).
- record (intros); record (rewrite <- append_correct1);

[ record (rewrite cycle_get)
| record (rewrite cycle_length)]; record (auto).

- record (intros); record (etransitivity);
[ record (apply append_correct2)
| record (rewrite cycle_length); record (auto)].

Qed.



c : ascii
s : string
n, i : nat
H : i < n - length s
______________________________________(1/1)
get i (cycle (n - length s) c ++ s) = Some c

rewrite <- append_correct1.

c : ascii
s : string
n, i : nat
H : i < n - length s
______________________________________(1/2)
get i (cycle (n - length s) c) = Some c
______________________________________(2/2)
i < length (cycle (n - length s) c)



[ascii]
[string]
[nat]
H : i < n - length s
______________________________________(1/1)
get i (cycle (n - length s) c ++ s) = Some c

rewrite <- append_correct1.

[ascii]
[string]
[nat]
H : i < n - length s
______________________________________(1/2)
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[ascii]
[string]
[nat]
[le-i, le-minus, minus-n, minus-length, length-s]
______________________________________(1/1)
[eq-append, eq-Some, append-get, append-s, get-i, get-cycle, get-c, ...]

rewrite <- append_correct1.

[ascii]
[string]
[nat]
[le-i, le-minus, minus-n, minus-length, length-s]
______________________________________(1/2)
[eq-get, eq-Some, get-i, get-cycle, cycle-minus, minus-n, minus-length, ...]
______________________________________(2/2)
[le-i, le-length, length-cycle, length-c, cycle-minus, cycle-n, ...]



[ascii, string, nat,
le-i, le-minus, minus-n, minus-length, length-s, ...,
eq-append, eq-Some, append-get, append-s, get-i, get-cycle, get-c, ...]

rewrite <- append_correct1.

[ascii, string, nat,
le-i, le-minus, minus-n, minus-length, length-s,
eq-get, eq-Some, get-i, get-cycle, cycle-minus, minus-n, minus-length, ...,
le-i, le-minus, minus-n, minus-length, length-s]



? | [string, nat, eq-plus, eq-n, plus-length, plus-get, ...]

m

intros [eq-minus, minus-length, minus-max, max-x, max-y, length-t, ...]
intros [nat, bool, plus-n, plus-length, length-k, eq-plus, eq-n]
...

...
rewrite sub_diag [nat, eq-minus, eq-zero, minus-n, minus-n]
rewrite sub_diag [nat, list, eq-minus, eq-zero, minus-length, minus-length, ...]

...
...

rewrite append_correct1 [ascii, string, nat, le-i, le-minus, minus-n, minus-length, ...]
...

...
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m
intros [eq-minus, minus-length, minus-max, max-x, max-y, length-t, ...]
intros [nat, bool, plus-n, plus-length, length-k, eq-plus, eq-n]
...

...
rewrite sub_diag [nat, eq-minus, eq-zero, minus-n, minus-n]
rewrite sub_diag [nat, list, eq-minus, eq-zero, minus-length, minus-length, ...]

...
...

rewrite append_correct1 [ascii, string, nat, le-i, le-minus, minus-n, minus-length, ...]
...

...



Machine Learning goal: Order database in order of relevance
k-nearest neighbor

Metric : d(v1,v2) = ∑
f ∈v1∩v2

log
|D|

|{v ∈ D | f ∈ v}

Jaccard : d(v1,v2) =
|v1∩ v2|
|v1∪ v2|

Cosine : d(v1,v2) =
|v1∩ v2√
|v1||v2|

Euclid : d(v1,v2) = |v1∪ v2− v1∩ v2|



Machine Learning goal: Order database in order of relevance
k-nearest neighbor

Metric : d(v1,v2) = ∑
f ∈v1∩v2

log
|D|

|{v ∈ D | f ∈ v}

Jaccard : d(v1,v2) =
|v1∩ v2|
|v1∪ v2|

Cosine : d(v1,v2) =
|v1∩ v2√
|v1||v2|

Euclid : d(v1,v2) = |v1∪ v2− v1∩ v2|



Machine Learning goal: Order database in order of relevance
k-nearest neighbor

Metric : d(v1,v2) = ∑
f ∈v1∩v2

log
|D|

|{v ∈ D | f ∈ v}

Jaccard : d(v1,v2) =
|v1∩ v2|
|v1∪ v2|

Cosine : d(v1,v2) =
|v1∩ v2√
|v1||v2|

Euclid : d(v1,v2) = |v1∪ v2− v1∩ v2|



Machine Learning goal: Order database in order of relevance
k-nearest neighbor

Metric : d(v1,v2) = ∑
f ∈v1∩v2

log
|D|

|{v ∈ D | f ∈ v}

Jaccard : d(v1,v2) =
|v1∩ v2|
|v1∪ v2|

Cosine : d(v1,v2) =
|v1∩ v2√
|v1||v2|

Euclid : d(v1,v2) = |v1∪ v2− v1∩ v2|



Machine Learning goal: Order database in order of relevance
k-nearest neighbor

Metric : d(v1,v2) = ∑
f ∈v1∩v2

log
|D|

|{v ∈ D | f ∈ v}

Jaccard : d(v1,v2) =
|v1∩ v2|
|v1∪ v2|

Cosine : d(v1,v2) =
|v1∩ v2√
|v1||v2|

Euclid : d(v1,v2) = |v1∪ v2− v1∩ v2|



Evaluation on Coq Standard Library: 144115 recorded pairs
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Proof Search

g1 t11 t12 t13 . . .

g3 t31 t32 t33 . . .t21 t22 t23 . . .g2 g4 t41 t42 t43 . . .

Skewed Breadth First Search

Let t1, . . . , tn be an ordered list of predicted tactics for goal g .
Subtree ti is always explored one step deeper than subtree ti+1.
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Evaluation on Coq Standard Library

10778 lemmas, 2099 proved

19.5% Proved



Possible improvements

. Monte Carlo Tree Search

. Better Tactic Decomposition

. Better Feature Engineering

. Tactic Argument Prediction

. ...



?
. What did I do wrong
. What can I improve
. Innovative ideas?


