
Tactic Learning for Coq

Lasse Blaauwbroek, Josef Urban

Czech Institute for Informatics, Robotics and Cybernetics
Czech Technical University in Prague

April 8, 2019

Tactic-level automation:

Idea: Learn from human-written proof scripts

Try to match proof states with the right tactic

Advantage: We can make use of custom made, domain specific
tactics written by clever humans

System Components

. Proof Recording

. Tactic Prediction

. Proof Search

. Proof Reconstruction

System Components

. Proof Recording

. Tactic Prediction

. Proof Search

. Proof Reconstruction

System Components

. Proof Recording

. Tactic Prediction

. Proof Search

. Proof Reconstruction

System Components

. Proof Recording

. Tactic Prediction

. Proof Search

. Proof Reconstruction

System Components

. Proof Recording

. Tactic Prediction

. Proof Search

. Proof Reconstruction

Design goals

. User Friendly

Online learning, minimal configuration, works everywhere

. Installation Friendly

No external dependencies

. Integration Friendly

Coq plugin, with minor modifications to Coq

. Maintenance Friendly

Ideally: eventual integration into Coq codebase

Downside: We potentially sacrifice the use of some awesome Machine
Learning algorithms

Design goals

. User Friendly

Online learning, minimal configuration, works everywhere

. Installation Friendly

No external dependencies

. Integration Friendly

Coq plugin, with minor modifications to Coq

. Maintenance Friendly

Ideally: eventual integration into Coq codebase

Downside: We potentially sacrifice the use of some awesome Machine
Learning algorithms

Design goals

. User Friendly Online learning, minimal configuration, works everywhere

. Installation Friendly

No external dependencies

. Integration Friendly

Coq plugin, with minor modifications to Coq

. Maintenance Friendly

Ideally: eventual integration into Coq codebase

Downside: We potentially sacrifice the use of some awesome Machine
Learning algorithms

Design goals

. User Friendly Online learning, minimal configuration, works everywhere

. Installation Friendly No external dependencies

. Integration Friendly

Coq plugin, with minor modifications to Coq

. Maintenance Friendly

Ideally: eventual integration into Coq codebase

Downside: We potentially sacrifice the use of some awesome Machine
Learning algorithms

Design goals

. User Friendly Online learning, minimal configuration, works everywhere

. Installation Friendly No external dependencies

. Integration Friendly Coq plugin, with minor modifications to Coq

. Maintenance Friendly

Ideally: eventual integration into Coq codebase

Downside: We potentially sacrifice the use of some awesome Machine
Learning algorithms

Design goals

. User Friendly Online learning, minimal configuration, works everywhere

. Installation Friendly No external dependencies

. Integration Friendly Coq plugin, with minor modifications to Coq

. Maintenance Friendly Ideally: eventual integration into Coq codebase

Downside: We potentially sacrifice the use of some awesome Machine
Learning algorithms

Design goals

. User Friendly Online learning, minimal configuration, works everywhere

. Installation Friendly No external dependencies

. Integration Friendly Coq plugin, with minor modifications to Coq

. Maintenance Friendly Ideally: eventual integration into Coq codebase

Downside: We potentially sacrifice the use of some awesome Machine
Learning algorithms

Minimum Viable ProductTM

All components function! Kind off...

Demo time

Minimum Viable ProductTM

All components function!

Kind off...

Demo time

Minimum Viable ProductTM

All components function! Kind off...

Demo time

Minimum Viable ProductTM

All components function! Kind off...

Demo time

System Components

. Proof Recording

. Tactic Prediction

. Proof Search

. Proof Reconstruction

Proof Recording:

Ltac, Mtac, SSreflect, ML-tactics, Ltac 2.0?

⇓

Backtracking proof monad

Seems impossible: How do we introspect the monad?

For now, only Ltac recording

Proof Recording:

Ltac, Mtac, SSreflect, ML-tactics, Ltac 2.0?

⇓

Backtracking proof monad

Seems impossible: How do we introspect the monad?

For now, only Ltac recording

Proof Recording:

Ltac, Mtac, SSreflect, ML-tactics, Ltac 2.0?

⇓

Backtracking proof monad

Seems impossible: How do we introspect the monad?

For now, only Ltac recording

Proof Recording:

Ltac, Mtac, SSreflect, ML-tactics, Ltac 2.0?

⇓

Backtracking proof monad

Seems impossible: How do we introspect the monad?

For now, only Ltac recording

Proof Recording:

Ltac, Mtac, SSreflect, ML-tactics, Ltac 2.0?

⇓

Backtracking proof monad

Seems impossible: How do we introspect the monad?

For now, only Ltac recording

Definition left_pad_spec c s n :
{s’ | (forall i, i < n - length s -> get i s’ = Some c)

/\ (forall i, get i s = get (i + (n - length s)) s’)}.
Proof.
exists (left_pad c s n). unfold left_pad.
split.
- intros; rewrite <- append_correct1;

[rewrite cycle_get
| rewrite cycle_length]; auto.

- intros; etransitivity;
[apply append_correct2
| rewrite cycle_length; auto].

Qed.

Definition left_pad_spec c s n :
{s’ | (forall i, i < n - length s -> get i s’ = Some c)

/\ (forall i, get i s = get (i + (n - length s)) s’)}.
Proof.
record (exists (left_pad c s n)). record (unfold left_pad).
record (split).
- record (intros); record (rewrite <- append_correct1);

[record (rewrite cycle_get)
| record (rewrite cycle_length)]; record (auto).

- record (intros); record (etransitivity);
[record (apply append_correct2)
| record (rewrite cycle_length); record (auto)].

Qed.

c : ascii
s : string
n, i : nat
H : i < n - length s
______________________________________(1/1)
get i (cycle (n - length s) c ++ s) = Some c

rewrite <- append_correct1.

c : ascii
s : string
n, i : nat
H : i < n - length s
______________________________________(1/2)
get i (cycle (n - length s) c) = Some c
______________________________________(2/2)
i < length (cycle (n - length s) c)

[ascii]
[string]
[nat]
H : i < n - length s
______________________________________(1/1)
get i (cycle (n - length s) c ++ s) = Some c

rewrite <- append_correct1.

[ascii]
[string]
[nat]
H : i < n - length s
______________________________________(1/2)
get i (cycle (n - length s) c) = Some c
______________________________________(2/2)
i < length (cycle (n - length s) c)

[ascii]
[string]
[nat]
[le-i, le-minus, minus-n, minus-length, length-s]
______________________________________(1/1)
[eq-append, eq-Some, append-get, append-s, get-i, get-cycle, get-c, ...]

rewrite <- append_correct1.

[ascii]
[string]
[nat]
[le-i, le-minus, minus-n, minus-length, length-s]
______________________________________(1/2)
[eq-get, eq-Some, get-i, get-cycle, cycle-minus, minus-n, minus-length, ...]
______________________________________(2/2)
[le-i, le-length, length-cycle, length-c, cycle-minus, cycle-n, ...]

[ascii, string, nat,
le-i, le-minus, minus-n, minus-length, length-s, ...,
eq-append, eq-Some, append-get, append-s, get-i, get-cycle, get-c, ...]

rewrite <- append_correct1.

[ascii, string, nat,
le-i, le-minus, minus-n, minus-length, length-s,
eq-get, eq-Some, get-i, get-cycle, cycle-minus, minus-n, minus-length, ...,
le-i, le-minus, minus-n, minus-length, length-s]

? | [string, nat, eq-plus, eq-n, plus-length, plus-get, ...]

m

intros [eq-minus, minus-length, minus-max, max-x, max-y, length-t, ...]
intros [nat, bool, plus-n, plus-length, length-k, eq-plus, eq-n]
...

...
rewrite sub_diag [nat, eq-minus, eq-zero, minus-n, minus-n]
rewrite sub_diag [nat, list, eq-minus, eq-zero, minus-length, minus-length, ...]

...
...

rewrite append_correct1 [ascii, string, nat, le-i, le-minus, minus-n, minus-length, ...]
...

...

? | [string, nat, eq-plus, eq-n, plus-length, plus-get, ...]

m
intros [eq-minus, minus-length, minus-max, max-x, max-y, length-t, ...]
intros [nat, bool, plus-n, plus-length, length-k, eq-plus, eq-n]
...

...
rewrite sub_diag [nat, eq-minus, eq-zero, minus-n, minus-n]
rewrite sub_diag [nat, list, eq-minus, eq-zero, minus-length, minus-length, ...]

...
...

rewrite append_correct1 [ascii, string, nat, le-i, le-minus, minus-n, minus-length, ...]
...

...

Machine Learning goal: Order database in order of relevance
k-nearest neighbor

Metric : d(v1,v2) = ∑
f ∈v1∩v2

log
|D|

|{v ∈ D | f ∈ v}

Jaccard : d(v1,v2) =
|v1∩ v2|
|v1∪ v2|

Cosine : d(v1,v2) =
|v1∩ v2√
|v1||v2|

Euclid : d(v1,v2) = |v1∪ v2− v1∩ v2|

Machine Learning goal: Order database in order of relevance
k-nearest neighbor

Metric : d(v1,v2) = ∑
f ∈v1∩v2

log
|D|

|{v ∈ D | f ∈ v}

Jaccard : d(v1,v2) =
|v1∩ v2|
|v1∪ v2|

Cosine : d(v1,v2) =
|v1∩ v2√
|v1||v2|

Euclid : d(v1,v2) = |v1∪ v2− v1∩ v2|

Machine Learning goal: Order database in order of relevance
k-nearest neighbor

Metric : d(v1,v2) = ∑
f ∈v1∩v2

log
|D|

|{v ∈ D | f ∈ v}

Jaccard : d(v1,v2) =
|v1∩ v2|
|v1∪ v2|

Cosine : d(v1,v2) =
|v1∩ v2√
|v1||v2|

Euclid : d(v1,v2) = |v1∪ v2− v1∩ v2|

Machine Learning goal: Order database in order of relevance
k-nearest neighbor

Metric : d(v1,v2) = ∑
f ∈v1∩v2

log
|D|

|{v ∈ D | f ∈ v}

Jaccard : d(v1,v2) =
|v1∩ v2|
|v1∪ v2|

Cosine : d(v1,v2) =
|v1∩ v2√
|v1||v2|

Euclid : d(v1,v2) = |v1∪ v2− v1∩ v2|

Machine Learning goal: Order database in order of relevance
k-nearest neighbor

Metric : d(v1,v2) = ∑
f ∈v1∩v2

log
|D|

|{v ∈ D | f ∈ v}

Jaccard : d(v1,v2) =
|v1∩ v2|
|v1∪ v2|

Cosine : d(v1,v2) =
|v1∩ v2√
|v1||v2|

Euclid : d(v1,v2) = |v1∪ v2− v1∩ v2|

Evaluation on Coq Standard Library: 144115 recorded pairs

0 5 10 15 20 25 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7 theoretical best

k-nearest neighbors

cu
m
ul
at
iv
e
pe
rc
en
ta
ge

euclid
jaccard
tfidf-jaccard
cosine
linear tfidf-jaccard
random

Evaluation on Coq Standard Library: 144115 recorded pairs

0 5 10 15 20 25 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7 theoretical best

k-nearest neighbors

cu
m
ul
at
iv
e
pe
rc
en
ta
ge

euclid
jaccard
tfidf-jaccard
cosine
linear tfidf-jaccard
random

Proof Search

g1 t11 t12 t13 . . .

g3 t31 t32 t33 . . .t21 t22 t23 . . .g2 g4 t41 t42 t43 . . .

Skewed Breadth First Search

Let t1, . . . , tn be an ordered list of predicted tactics for goal g .
Subtree ti is always explored one step deeper than subtree ti+1.

Proof Search

g1 t11 t12 t13 . . .

g3 t31 t32 t33 . . .t21 t22 t23 . . .g2 g4 t41 t42 t43 . . .

Skewed Breadth First Search

Let t1, . . . , tn be an ordered list of predicted tactics for goal g .
Subtree ti is always explored one step deeper than subtree ti+1.

Evaluation on Coq Standard Library

10778 lemmas, 2099 proved

19.5% Proved

Possible improvements

. Monte Carlo Tree Search

. Better Tactic Decomposition

. Better Feature Engineering

. Tactic Argument Prediction

. ...

?
. What did I do wrong
. What can I improve
. Innovative ideas?

