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Can we create a human level Al to reason about
mathematics?

Without relying on informal human mathematics Relying on informal human mathematics

e No need for autoformalization (requires high e Needs auto-formalization
level of natural language understanding)

e Requires no formalization on user side

e Need to formalize the notion of e Could learn the human notion of
“interestingness”. “interestingness”.
e User needs to learn an “alien” language just e Lot of training data to bootstrap from

to communicate a theorem to it
e Can’t communicate its discoveries
e May be hard to bootstrap (little training data)
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APls for Theorem Prover Developers and ML Researchers
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Proof Assistant Service

RegisterTheorem ApplyTactic
Register a new theorem Apply a tactic to a goal,
for use as premise in potentially generating
later proofs. new subgoals.
e Request: e Request:
o Theorem o Goal
o Tactic
e Response: one of e Response: one of
o TheoremFingerprint o Subgoals

o Error o Error



Proof Search Tree API

Apply a tactic to any goal at any time.

Controlled by any algorithm, e.g. neural algorithms.
Automated merging of identical goals.

On the fly tracking of:

o Goals that are closed
o Subgoals that can’t help closing the main goal

Collects statistics (e.g. running time, error codes).
Serialized as ProoflLog.
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Proof Search

e Qur prover: simple BFS Prover built on this tree API, with limits on branching.
o max_top_suggestions (default: 20)

o max_successful_branches (default: 2)
o max_explored nodes (default: 100)

o max_theorem_parameters (we used: 16)

e Built on Tree API, easy to extend for more interesting proof search.



APls for Theorem Prover Developers and ML Researchers

(Proof) Assistant One goal/subgoal to prove

One proof step:

Tactic application, relevant premises
Subgoals

or *proved*

Proof Search Ranking of tactics and
premises

Formal Reasoning
Agent

One goal/subgoal to prove

Machine Learning




Machine Learning

e Predictions API integrating with the proof search.

o (Goal, Tactic ID) -> Score

o (Goal, Premise) -> Score

e Our models, experiments: more in the next talk.



APls for Theorem Prover Developers and ML Researchers

Assistant

RegisterTheorem
ApplyTactic

Proof Search

- Manages the state of the
proof search tree.

- Allows arbitrary nodes to
be explored.

Machine Learning

Given:
- Current goal

Score:
- Tactic applied
- Premises used




Making available to researchers

Benchmark

Theorem Database

Theorems Definitions

Core 2,320 240
required for creating in-built tactics

Complex 16,623 396
separated into training, validation, testing

FlySpeck 10,519 1,563
for evaluating generalization



Making available to researchers

Data Model

® Proof Logs: e Checkpoints of two-tower
architecture from imitation learning

o  Synthetic proofs
and reinforcement learning.

o Human proofs

e Proof Logs as TF Examples ¢ Sample training code.

o Features:
n  Goal (string)
o Labels:

= Tactic applied (int)
s Premises used (string)



Making available to researchers

Code Docker images

HOL Light (with our modifications) HOL Light (server)
http://github.com/ gcr.io/deepmath/hol-1ight
brain-research/hol-1light

DeepHOL prover DeepHOL prover
http://github.com/ gcr.io/deepmath/deephol

tensorflow/deepmath



http://deephol.org

Code is on GitHub. Training data, checkpoints,
docker images also being made available.



