
Can Neural Networks Learn
Symbolic Rewriting?

Bartosz Piotrowski, Chad Brown, Josef Urban
and Cezary Kaliszyk

7 April 2019, Obergurgl



Motivation

• Neural network architectures proved to be very successful in
various tasks related to processing natural language; more
notably, neural machine translation systems (NMT)
established state-of-the-art in the task of translation between
languages.

• Recently, NMT produced first encouraging results in the
autoformalization task where given an informal mathematical
text in LATEX the goal is to translate it to its formal (computer
understandable) counterpart.

I See Wang, Kaliszyk, Urban. First experiments with neural
translation of informal to formal mathematics. CICM 2018.

• This encouraged us to pose a question:
Can NMT models learn symbolic rewriting?



Can NMT models learn symbolic rewriting?

An attempt to answer this question is important for several
reasons:

1. It may allow for better understanding of the capabilities and
limitations of the current neural network architectures.

I This is in the spirit of works like Evans et al., Can Neural
Networks Understand Logical Entailment? ICLR 2018.

2. It may be relevant for various tasks in automated reasoning.
Neural models could compete with symbolic methods such as
inductive logic programming (ILP) that have been previously
experimented with to learn simple rewrite tasks and
theorem-proving heuristics from large formal corpora.

I There is a striking contrast between ILP and NMT methods
with respect to handling large and rich data sets: ILP can
suffer for combinatorial explosion whereas for NMT much data
is beneficial.

3. It can motivate developing new kinds of neural architectures.



Data sets

To perform experiments answering our question we prepared two
different data sets:

1. A set of examples found in ATP proofs in a mathematical
domain – AIM loops (Abelian inner mappings).

2. A synthetic set of polynomial terms.



AIM data set

• The data consists of sets of ground and non-ground rewrites
that came from Prover9 proofs of theorems about AIM loops
produced by Bob Veroff and Michael Kinyon.

• Many of the inferences in the proofs are paramodulations from
an equation and have the form

s = t u[θ(s)] = v

u[θ(t)] = v

where s, t, u, v are terms and θ is a substitution.

• For the most common equations s = t, we gathered
corresponding pairs of terms

(
u[θ(s)], u[θ(t)]

)
which were

rewritten from one to another with s = t.

• We put the pairs to separate data sets (depending on the
corresponding s = t): in total 8 data sets for ground rewrites
(where θ is trivial) and 12 for non-ground ones.



AIM data set

Rewrite rule: b(s(e, v1), e) = v1

Before rewriting: k(b(s(e, v1), e), v0)

After rewriting: k(v1, v0)



AIM data set

Rewrite rule: b(s(e, v1), e) = v1

Before rewriting: k(b(s(e, v1), e), v0)

After rewriting: k(v1, v0)



AIM data set

Rewrite rule: b(s(e, v1), e) = v1

Before rewriting: k(b(s(e, v1), e), v0)

After rewriting: k(v1, v0)



AIM data set

Rewrite rule: o(V0, e) = V0

Before rewriting: t(v0, o(v1, o(v2, e)))

After rewriting: t(v0, o(v1, v2))



AIM data set

Rewrite rule: o(V0, e) = V0

Before rewriting: t(v0, o(v1, o(v2, e)))

After rewriting: t(v0, o(v1, v2))



AIM data set

Rewrite rule: o(V0, e) = V0

Before rewriting: t(v0, o(v1, o(v2, e)))

After rewriting: t(v0, o(v1, v2))



AIM data set

Rewrite rule: k(V0, k(V1, V2)) = k(V1, k(V0, V2))

Before rewriting: l(k(v1, k(v0, v2)), k(v0, v2), v3)

After rewriting: l(k(v0, k(v1, v2)), k(v0, v2), v3)



AIM data set

Rewrite rule: k(V0, k(V1, V2)) = k(V1, k(V0, V2))

Before rewriting: l(k(v1, k(v0, v2)), k(v0, v2), v3)

After rewriting: l(k(v0, k(v1, v2)), k(v0, v2), v3)



AIM data set

Rewrite rule: k(V0, k(V1, V2)) = k(V1, k(V0, V2))

Before rewriting: l(k(v1, k(v0, v2)), k(v0, v2), v3)

After rewriting: l(k(v0, k(v1, v2)), k(v0, v2), v3)



AIM data set

• Each of the 20 rewrite rules corresponds to a data set with
number of examples (pairs of terms) between 150 and 11000.

• We also took a union of all these data sets which gave
∼ 53000 examples.

• The data sets were split into training (70%) and test (30%)
sets.



Polynomial data set

• This is a synthetically created data set where the examples are
pairs of equivalent polynomial terms.

• The first element of each pair is a polynomial in an arbitrary
form and the second element is the same polynomial in the
normalized form.

• The arbitrary polynomials are created randomly in a recursive
manner from a set of available (non-nullary) function symbols,
variables and constants.



Polynomial data set

Before rewriting: After rewriting:

(x * (x + 1)) + 1 x ^ 2 + x + 1

(2 * y) + (1 + (y * y)) y ^ 2 + 2 * y + 1

(x + 2) * (((2 * x) + 1) + (y + 1)) 2 * x ^ 2 + 5 * x + y + 3



Polynomial data set

Before rewriting: After rewriting:

(x * (x + 1)) + 1 x ^ 2 + x + 1

(2 * y) + (1 + (y * y)) y ^ 2 + 2 * y + 1

(x + 2) * (((2 * x) + 1) + (y + 1)) 2 * x ^ 2 + 5 * x + y + 3



Polynomial data set

• Several data sets of various difficulty were created by varying

1. the number of available symbols,
2. the length of the polynomials.

• Each created data set consists of 300000 examples.

• The data sets were split into training (70%) and test (30%)
sets.



Experiments

• For experiments we used an established NMT implementation
from the Tensorflow repo
(https://github.com/tensorflow/nmt).

• This NMT implementation is a classical sequence-to-sequence
architecture based on LSTM cells and using the attention
mechanism.

• Hyperparameters used for training were inherited from
experiments on LATEX-to-Mizar translation by Shawn et al.

• (Additionally, we experimented with the Transformer model
which is a sequence-to-sequence model not using recurrent
connections but only multi-head attention (see Vaswani et al,.
Attention Is All You Need. NIPS 2017). After training for the
same number of steps the achieved results were weaker. But
we didn’t tune paramteres too much and Transformer is very
sensitive to hyperparameters.)

https://github.com/tensorflow/nmt


Experiments

Some of the hyperparameters of NMT which were used:

--num_train_steps=10000

--attention=scaled_luong

--num_layers=2

--num_units=128

--dropout=0.2



Results for AIM data set

• We trained NMT models for each of the 20 rewrite rules in
the AIM data set.

• Additionally, we trained an NMT model on a joint set of all
rewrite rules.

• As long as the number of examples was greater than 1000,
were able to learn the rewriting task with high accuracy –
reaching ∼ 90% on separated test sets.

• On the joint set of all rewrite rules (consisting of 41396
examples) the performance was also good – 83%.

• This means that the task of applying single rewrite step seems
relatively easy to learn by NMT.



Results for AIM data set
Rule: Training examples: Test examples: Accuracy:

abstrused1u 2472 1096 86.50%
abstrused2u 2056 960 89.27%
abstrused3u 1409 666 84.38%
abstrused4u 1633 743 87.48%
abstrused5u 2561 1190 89.58%
abstrused6u 81 40 12.50%
abstrused7u 76 37 0.00%
abstrused8u 79 39 2.56%
abstrused9u 1724 817 86.78%
abstrused10u 3353 1573 82.96%
abstrused11u 10230 4604 79.00%
abstrused12u 7201 3153 87.22%
instused1u 198 97 20.62%
instused2u 196 87 25.29%
instused3u 83 41 29.27%
instused4u 105 47 2.13%
instused5u 444 188 59.57%
instused6u 1160 531 87.57%
instused7u 307 144 13.89%
instused8u 116 54 3.70%
union of all 41396 11826 83.29%



Results for AIM data set
Rule: Training examples: Test examples: Accuracy:

abstrused1u 2472 1096 86.50%
abstrused2u 2056 960 89.27%
abstrused3u 1409 666 84.38%
abstrused4u 1633 743 87.48%
abstrused5u 2561 1190 89.58%
abstrused6u 81 40 12.50%
abstrused7u 76 37 0.00%
abstrused8u 79 39 2.56%
abstrused9u 1724 817 86.78%
abstrused10u 3353 1573 82.96%
abstrused11u 10230 4604 79.00%
abstrused12u 7201 3153 87.22%
instused1u 198 97 20.62%
instused2u 196 87 25.29%
instused3u 83 41 29.27%
instused4u 105 47 2.13%
instused5u 444 188 59.57%
instused6u 1160 531 87.57%
instused7u 307 144 13.89%
instused8u 116 54 3.70%
union of all 41396 11826 83.29%



Results for polynomial data set

• The polynomial data set appeared to be more challenging but
also was much larger.

• The results were rather very satisfying – depending on the
difficulty of the data, accuracy on the test sets achieved in our
experiments varied between 70% and 99%.



Results for polynomial data set

Function
symbols

Constant
symbols

Number of
variables

Maximum
length

Accuracy
on test

+, ∗ 0, 1 1 30 99.28%
+, ∗ 0, 1 2 30 97.43%
+, ∗ 0, 1 3 50 88.20%
+, ∗ 0, 1, 2, 3, 4, 5 5 50 83.47%
+, ∗, ˆ 0, 1 2 50 85.56%
+, ∗, ˆ 0, 1, 2 3 50 71.81%



Conclusions

• NMT is not typically applied to symbolic problems, but
somewhat surprisingly, it performed very well for both
described tasks.

• The first one was easier in terms of complexity of the
rewriting (only one application of a rewrite rule was
performed) but the number of examples was quite limited.

• The second task involved more difficult rewriting – multiple
different rewrite steps were performed to construct the
examples. Nevertheless, provided many examples, NMT could
learn normalizing polynomials.



Future work

We propose several directions in which this work can be extended:

• Experimenting with more interesting and challenging problems
related to rewriting.

• Implementing new neural architectures suited especially for
this kind of symbolic problems. In particular, we want to
implement architectures whose structure is conditioned on a
tree shape of the terms. (TreeNN-based models and their
extensions, e.g. with attention mechanism.)

• Find some task where it would be interesting to compare
performance of NMT-based rewriting with ILP-based
rewriting.

• Find a way how to fruitfully use NMT methods within
automated reasoning systems.



Thank you!



Can Neural Networks Learn
Symbolic Rewriting?

It seems that, in some sense, yes!

Bartosz Piotrowski, Chad Brown, Josef Urban
and Cezary Kaliszyk

7 April 2019, Obergurgl


