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Abstract

Heuristic selection for automated theorem provers [6, 7, 11] has received considerable
attention in recent years [1, 4, 5, 8, 9, 10, 12]. Various heuristics for proof searching yield
dramatically different solving times for different problems. In this paper we introduce
methods for learning good heuristics for sets of diverse problems via parameter optimisation
and dynamic clustering. We also propose a method for predicting the optimal heuristic
and estimating the solving time of a given problem. We divide the system into two phases:
the heuristic learning phase (HLP), and the heuristic mapping phase (HMP).

Heuristic Learning Phase: HLP

The goal of this phase, presented in Algorithm 1, is to learn diverse heuristics using SMAC
[3] and at the same time cluster problems based on heuristics performance. SMAC (Sequential
Model-based Algorithm Configuration) is a hyperparameter optimiser which can optimise both
numerical and categorical parameters. It builds a model for selecting promising configurations,
by creating an ensemble of regression trees over the space of the parameter options.

We can run SMAC over a collection of problems with the goal of optimising the number
of problems solved. However, problem sets are usually diverse: different problems require
different heuristics, and learning a single heuristic which is globally optimal does not necessarily
result in a useful heuristic for specific problems. We propose to cluster similar problems and
optimise heuristics for each cluster separately. To create collections of problems with some
similarity, we cluster the problems based on the syntactic problem features and in addition we
use dynamic features representing the heuristics performance on the problems. These features
are normalised, weighted and combined to create a feature vector which is used to produce K
problem clusters by applying the K-means algorithm.

A syntactic feature is a feature representing syntactic properties of the problem. Such fea-
tures can be the number of EPR or Horn clauses. A selection of syntactic features constructs
problem_feature_vector. The heuristic_evaluation_vector consists of the solving times for the
problem when ran over the set of heuristics. A special value is used for time outs. We com-
bine problem_feature_vector and heuristic_evaluation_vector to cluster problems and run the
SMAC heuristic optimisation over these clusters separately (the inner for loop in Algorithm 1).
After optimising the heuristics over the clusters, we evaluate the best local heuristics over the
whole problem set and re-cluster problems based on the new heuristics performance.

Heuristic Mapping Phase: HMP

The second phase consists of building an automatic heuristic selector which selects the optimal
heuristic concerning the solving time from a set of heuristics. This heuristic set is the result of
the HLP phase as it has discovered optimal heuristics for subsets of problems. Based on this
data we construct the dataset D = [(x1,y1), ..., (Zn,Yn)] Where z is the problem_feature_vector
and y is the optimal heuristic for the problem. Hence, we can represent the heuristic mapping
by the function f : z — y. We can approximate this function by utilising supervised machine
learning methods. In particular, we can use XGBoost [2] which is an implementation of Gradient
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Algorithm 1 Heuristic Learning Phase

1. best_heuristics + get_initial _heuristics()
2: problem_feature_vector < get_problem_features()

3: repeat

4: heuristic_evaluation_vector < compute_proving_times(best_heuristics)

5: problem_clusters < kmeans(problem_feature_vector, heuristic_evaluation_vector)
6: new_heuristics < ()

7 for cluster € problem_clusters do

8: problem_sample < get_problem_sample(cluster)

9: run-SM AC (best_heuristic(cluster), problem_sample)

10: new_heuristics < new_heuristics U get_optimal_heuristics_from_SM AC run()
11: end for

12: new_heuristics < get_top_heuristics(problem_clusters)

13: best_heuristics <— best_heuristics Unew_heuristics

14: until Timeout

Boosting Machines. This model is known to be quite fast, have state-of-the-art performance
and to control overfitting better than most alternatives. It is therefore reasonably to assume
that the model will perform well on this dataset, even though it is likely to be imbalanced.

Figure 1: Heuristic Mapping and Regression Overview
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There may be the case that a heuristic cannot solve a problem. This occurs either if the
model predicted the wrong heuristic or the problem is previously unseen, in which case a
heuristic which can solve the problem does not exist in the set. These situations can waste an
unnecessary amount of resources, as the prover will not be able to solve the problem within
a global time constraint. To reduce this resource waste, we propose to create a regression
model which estimates the solving time of a problem. The problems can be represented by
the problem_feature_vector. As the runtime is dependent on the heuristic, we can encode the
heuristic as a one-hot vector to get a proper representation of the input to the prover. This
regression model can be constructed by non-linear regression using XGBoost or neural networks.

Conclusion

The HLP phase is implemented as a Python wrapper around the SMAC framework which runs
iProver as its target function. SMAC has an option for sharing the model between multiple
SMAC instances which allows us to optimise the same model over several server nodes. All the
experiment data is stored in a database. The HMP phase interacts with the database and the
machine learning models, both for training and evaluation.

Experimental results over the CASC’18 FOF data set show that the HLP-prediction phase
manages to increase the number of solved problems by 24% in 30 hours, starting with the
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default iProver heuristic. The HMP phase reduces the average solving time over jointly solved
problems by 40%.

One of the related methods is BlistrTune [5] which interleaves a search for high-level param-
eters with fine-tuning for the heuristic invention. Our approach differs as it does not interleave
during the search but utilises a model based configuration algorithm, as well as it optimises
over subsets of problems from dynamically generated clusters.

In [1] we see automatic heuristic selection using Support Vector Machines and Gaussian
Processes on a general set of heuristics, whereas we utilise a tree boosting algorithm on a
specialised set of heuristics. The system E-MaleS [8] uses a Gaussian Kernel to perform
heuristic selection by selecting the best time estimate of a problem for each candidate heuristic.
Our approach differs by treating heuristic selection as a classification task and time estimation
as a regression problem. The separation of concerns may lead to better performing components
which can significantly improve the overall system.
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