
Project Proposal:

Neural Modelling of Mathematical Structures∗

Martin Smoĺık and Josef Urban

1 Charles University
2 Czech Technical University, Prague,

Introduction and planned experiments

In this project we will focus on the usage of deep learning in building a ”mathematical intuition”
for a machine. The ultimate goal is to make a neural network that will attempt to distinguish
between true and false statements about a mathematical structure, based on training on a
provided knowledge base of true and false statements. For more complicated mathematical
structures such as natural and real numbers, set-theoretical universes, or just any very large
finite object, our knowledge base may be incomplete, infinite and/or non-computable. However,
we will first mainly focus on a few specific cases, where we will try to build a network that
”understands” group operations or real numbers.

Initially, we will focus on small finite structures, in particular groups, and try to build
networks that will emulate the group operations · and −1, as well as the constant e. The
sequence of planned experiments is roughly as follows:
• Learn finite structures directly from their multiplication/interpretation table(s).
• Learn finite structures from sets of (universally) quantified sentences.
• Learn finite structure from sets of randomly chosen or generated sentences.
• Learn infinite structures in a similar way.

At each point we can evaluate the usefulness of the trained neural approximations directly on
a knowledge base of true/false statements, but also in more complex tasks such as estimating
the truth of conjectures generated automatically by various conjecturing methods.

Experiments done on finite groups so far

Short introduction to groups: A group is a mathematical structure that has 2 operators
(in our case called ”composition” - denoted · and ”inverse” - denoted −1) and one constant,
called ”unit” - e. These operators and the constant must satisfy some axioms (for any elements).
• Associativity: (x · y) · z = x · (y · z)
• Unit: x · e = x = e · x
• Inverse: x · x−1 = e = x−1 · x

Learning of the composition operator: Our main focus are now on small permutation
groups. Composition operator is learned from the multiplication table. We construct a mul-
tilayer feedforward neural network that tries to estimate the result. For this we choose a
grounding - a representation of the group elements as vectors of a chosen size. We construct
training data by taking groundings of pairs of random elements and we pre-compute the result
of the composition. The network processes the input pairs, we measure the error and backprop-
agate. Because we use the multiplication table, our data will always satisfy the associativity
axiom.

∗Supported by the ERC Consolidator grant no. 649043 AI4REASON and by the Czech project AI&Reasoning
CZ.02.1.01/0.0/0.0/15 003/0000466 and the European Regional Development Fund.

Neural Models Smoĺık, Urban

Figure 1: Accuracy during training for S3. Figure 2: Accuracy for S4.

Learning of the unit and inverse operator: The unit and the inverse operator are trained
differently. We try to learn them by trying to satisfy universally quantified formulas. We pre-
train the composition operator, and we use it to train the networks for the unit and the inverse
operator. Unit is represented as a single (learned) tensorflow variable. Using the composition
operator and a random element x, we estimate x · e. This should always be equal to x. We
measure the error and adjust our estimation of e accordingly. Here we do not change any
variables in the pre-trained composition operation. For the inverse operator we also use this
method with the inverse axiom. Inverse operator, like composition, is a multilayer feedforward
neural network. For a random element x we estimate x · x−1. This should be equal to our
estimated value of e. We therefore measure the error and backpropagate in the inverse’s network.
We once again do not touch the composition nor unit.

Results

We have built a framework in tensorflow [1] that supports learning from both tables and univer-
sally quantified formulas. In Figure 1 we can see the accuracy of operations in a group S3 in one
of the early implementations. Training consisted of almost 100 000 epochs. All operations were
trained at the same time, although optimizers were able to alter only their specific variables.
Because of implementation difficulties in tensorflow the identity and inverse were trained in
batches of 1. That is why in case of the inverse operator the accuracy has such a high variation.

So far we have used a very basic grounding, where each permutation is represented in R3

by its one-line notation, e.g. the identity is represented by the vector [0, 1, 2]. The loss function

that was used was (|vc − ve|L1
)
2

where vc is computed and ve is the expected value. Such a
grounding and loss function are however not optimal and may result in large inaccuracies when
working with larger groups. The accuracy is computed as |vc − ve|L1 with vc and ve as above.
The metric used is the L1 metric. We use base 10 logarithm, which means that in the end the
error was close to 0.01.

Figure 2 shows the graph for training of the group S4 with similar groundings and loss
functions as for S3. The training went for 1 000 000 epochs. We can see that the inverse
operator is severely limited by the size of the training batch. We can also see that the identity
is very accurate despite having the same disadvantage. The talk will discuss further experiments
with training groups and other mathematical structures.

The networks described here use 4 hidden layers with 9 nodes each. The activation function
is leaky ReLu. The optimizer is a default tensorflow Adam optimizer, therefore the learning
rate is quite low. Our project’s goal also includes finding better architectures.

2

Neural Models Smoĺık, Urban

References

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Ra-
jat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale
machine learning. In Kimberly Keeton and Timothy Roscoe, editors, 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4,
2016., pages 265–283. USENIX Association, 2016.

3

