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Mini-games are playing an important role in the field of artificial intelligence for video
games [8, 5]. The principle is that a particularly complex problem can be split it into smaller
tasks presenting gentle learning curves. Lessons learned from these easier challenges should
prove valuable for solving the original problem.

This divide and conquer strategy could also benefit the automated theorem proving com-
munity. That is why we propose three mini-games, each of them being a simplified challenge
representative of a larger class of theorem proving problems.

Arithmetic Let T =rec {(0, S t1, t1 +t2, t1×t2 | (t1, t2) ∈ T 2} and E =def {t1 = t2 | (t1, t2) ∈
T 2}. Let x, y be variables and A =def {x + 0 = x, x× 0 = 0, x + S y = S (x + y), x× S y =
x × y + x}. We define R to be rewrite rules for both orientations of equations in A with the
exception of 0→ x× 0. For any e1, e2 ∈ E and t ∈ T the following rules hold:

reflexivity
t = t

e2 if e1 → e2e1

Predictors We compare the performance of two predictors PNear and PTree. The nearest
neighbor algorithm PNear relies on subterm features and is one of the best performing predictor
for premise selection tasks in hammers [2]. The tree neural network PTree mimics the structure of
the input formula. Each operator 0, S, +,×, = is replaced by a feed-forward neural network [11]
with one hidden layer. The embedding space has dimension four.

Reinforcement Learning The mini-games 2 and 3 are solved by reinforcement learning. We
rely on a Monte Carlo tree search [4] to explore different configurations according to their reward
potential and progressively improve our predictions form this feedback. Such methodology is
described in detail in [7, 10]. Since PTree is faster than PNear , we use 1600 simulation per move
for PTree and 100 for PNear .

Mini-Game 1: Validity of a Formula

The goal of this mini-game is to decide whether a formula is true or false. By solving it, a
predictor will gain the ability to guess the truth value of a formula. Such knowledge could help
automated theorem provers avoid spending time searching for a proof of a formula if it is likely
to be false. We run a specific instance of this mini-game with a training set of 3200 equations.
On a test set of 400 true equations and 400 false equations, we get a percentage of correct
guesses of:

53.0% for PNear and 100.0% for PTree
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The estimation of the truth of a formula given by PNear to estimate is very close to a random
guess. For example, the equations t = u and t × 0 = u may not have the same truth value
although they are syntactically close. Moreover, by comparing PTree to PNear , we can observe
that PTree is not just memorizing the truth values. Otherwise, it would have gotten the same
score or a worse score than PNear .

Mini-Game 2: Proof by Rewriting

The goal of this mini-game is to prove a formula through MCTS-guided reinforcement learning
using the backward reasoning steps defined by the calculus. The predictor decides at which
position in the current term a rewrite step should be applied and the rewrite rule to apply. The
choice of a position is made through a series of finite branching choices. Starting from the root
position of the equation, the predictor chooses whether to take the left or the right branch and
whether to stop or descend further. Therefore, many sub-steps are required to perform a single
proof step.
The dataset consists of 100 true equations with
shortest proof length ranging from 2 to 6 (20
of each). The number of proven equations after
each generation is:

0× (0 + 0) = 0× (0 + S 0)
0× (0 + 0) + 0 = 0× (0 + S 0)
0× (0 + 0) + 0 = 0× S (0 + 0)
0× (0 + 0) + 0 = 0× (0 + 0) + 0

PNear 19 32 53 75 81 88 98 99 100 100
PTree 22 24 32 52 68 88 93 97 93 100

Both PNear and PTree gradually prove all targets. This shows that this mini-game can be
mastered from a dataset of self-generated examples and the syntactical distance given by PNear .
Scaling the problem to larger terms and longer proofs may require better generalizations.

Mini-Game 3: Term Synthesis

The goal of this mini-game is to replicate a target term. It provides a simple example of a term
building process. Finding a witness (or counter-example) [6, 3] is an natural extension of this
mini-game. In order to apply reinforcement learning, we re-frame term synthesis as a search
problem. The copy is built starting from the root. At each node, the predictor chooses the
operator it wants to imitate. When branching occurs, we first construct the left part of the
tree. The replication fails if the copy reaches a size bigger than the target.

The dataset consists of 100 target terms with
term size ranging form 6 to 10 (20 of each). The
number of replicated term after each generation
is:

�, S �, S (�×�), S (0×�),
S (0× (� + �)), S (0× (0 + �)),
S (0× (0 + �)), S (0× (0 + S 0))

PNear 5 5 8 8 8 9 9 9 9 9
PTree 11 11 11 11 11 11 11 12 11 11

The discrepancy observed between PNear and PTree is simply due to the different number of
simulations. Since there is exactly one path to the target, any deviation leads to a state where
the goal is not reachable anymore. This issue could be solved by adding the possibility to
mutate the partially constructed term, making the underlying term rewriting system confluent.
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Road Map To conclude, we propose extensions to these mini-games that would move us closer
to our final goal of creating stronger automated theorem provers. Our plan is to gradually
increase the difficulty of these three problems, test other kind of predictors and change the
underlying theory/calculus. At the same time, we would like to design more mini-games,
providing a way to evaluate fairly and eventually master other proving [9] and para-proving
abilities [1, 12].
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