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Abstract

SMT solvers are among the most suited tools for quantifier-free first-order problems, and
their support for quantified formulas has been improving in recent years. To instantiate
quantifiers, they rely on heuristic techniques that generate thousands of instances, most
of them useless. We propose to apply state-of-the-art machine learning techniques as
classifiers for instances on top of the instantiation process. We show that such techniques
can indeed decrease the number of generated useless instances. We envision that this could
lead to more efficient SMT solving for quantified problems.

Satisfiability-modulo-theories (SMT) solvers are among the best backends for verification tools
and “hammers” in proof assistants. When proof obligations contain quantified formulas, SMT
solvers rely on instantiation, replacing quantified subformulas by sets of ground instances.
Three main techniques have been designed: enumerative [11], trigger-based [4], and conflict-
based [12] instantiation. Among these, only conflict-based instantiation computes instances
that are guaranteed to be relevant, but it is incomplete and is normally used in combination
with other techniques. Enumerative and trigger-based techniques are highly heuristic and
generate a large number of instances, most of them useless. As a result, the search space of
the solver explodes. Reducing the number of instances could improve the solver’s efficiency and
success rate within a given time limit.

We propose to use a state-of-the-art machine learning algorithm as a predictor over the
generated set of instances to filter out irrelevant instances, and thus decrease the number of
instances given to the ground solver. The predictor is invoked after each instantiation round
to rate the potential usefulness of each generated instance. Several strategies are then used
to build a subset of potentially relevant instances that are immediately added to the ground
solver. Adding the other instances is postponed.

We conducted our experiment in veriT [2], an SMT solver that implements all three in-
stantiation techniques described above. We chose as predictor the XGBoost gradient boosting
toolkit [3] with the binary classification objective. This configuration had already been used
successfully in the context of theorem proving [6, 10].

Choosing a suitable set of features is crucial for effective machine learning. The features
determine how precise the representation of the problem is. Previous works already investi-
gate features for theorem proving [1, 5, 6, 8–10]. Our features are more specifically inspired by
ENIGMA [6] and RLCoP [7]. They are basically term symbols and term walks with symbol
sequences projected to features using Vowpal Wabbit hashing. Term variables and Skolem con-
stants are translated analogously to constants. The model is further enriched with abstract
features such as term size, term depth, and the number of instances.

To encode our problem into sparse vectors, we use three kinds of information available to
the solver: the ground part of the formula (set of literals l1, . . . , lm), the quantified formula
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Figure 1: Comparison of veriT configurations on UF SMT-LIB benchmarks

ψ[xn] to instantiate, and the substitution. A query to the predictor is represented by a tuple
of the form

( l1, . . . , lm , ψ[xn] , x1 7→ t1, . . . , xn 7→ tn )

In the learning phase, to discriminate useful instances from others in the run of the solver,
we consider the pruned proof with only the relevant facts. An instance produced in the run
is tagged as useful if it also occurs in the pruned proof. To train the predictor, we used the
SMT-LIB benchmarks in the UF category. We ran veriT on 1866 SMT formulas randomly
divided into two sets: 560 for the test set (30%) and 1306 for the training set (70%). One run of
the solver generates many more useless instances (99%) than useful ones (1%). Consequently,
we used undersampling to obtain a balanced data set for learning.

Figure 1 compares the numbers of generated instances for two versions of the veriT solver:
with instance selection (x-axis) and without (y-axis). The fewer instances, the better. The
left-hand side shows the results of the solvers on the entire data set (training and test), whereas
the right-hand side shows the results only on the test set. In both plots, a cluster of points is
forming along the line corresponding to the equation f(x) = 2x. On average, instance selection
allows veriT to find proofs with about half the number of instances. On the other hand, a time
comparison would not look good for instance selection, because the current prototype relies on
extremely time consuming external calls to the predictor.

These results show that our approach seems to be suitable to substantially reduce the number
of generated instances. The implementation of this first prototype is suboptimal. We are now
working on an implementation of the predictor inside veriT, hoping to make the prediction cost
close to negligible. We hope that the good results in terms of number of instances required will
eventually translate into strong performance.
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