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Introduction

Neural networks (NNs) turned out to be very useful in several domains. In particular, one of the
most spectacular advances achieved with use of NNs has been natural language processing. One
of the tasks in this domain is translation between natural languages – neural machine translation
(NMT) systems established here the state-of-the-art performance. Recently, NMT produced
first encouraging results in the autoformalization task [6, 5, 4, 12] where given an informal
mathematical text in LATEX the goal is to translate it to its formal (computer understandable)
counterpart. In particular, the NMT performance on a large synthetic LATEX-to-Mizar dataset
produced by a relatively sophisticated toolchain developed for several decades [1] is surprisingly
good [12], indicating that neural networks can learn quite complicated algorithms. This inspired
us to pose a question: Can NMT models be used in the formal-to-formal setting? In particular:
Can NMT models learn symbolic rewriting?

The answer is relevant to various tasks in automated reasoning. For example, neural models
could compete with symbolic methods such as inductive logic programming [10] (ILP) that have
been previously experimented with to learn simple rewrite tasks and theorem-proving heuristics
from large formal corpora [11]. Unlike (early) ILP, neural methods can however easily cope with
large and rich datasets, without combinatorial explosion. Our work is also an inquiry into the
capabilities of NNs as such, in the spirit of works like [3].

Data

To perform experiments answering our question we prepared two data sets – the first consists
of examples found in ATP proofs in a mathematical domain (AIM loops), whereas the second
is a synthetic set of polynomial terms – they are described below.

The AIM data set: The data consists of sets of ground and nonground rewrites that came
from Prover9 proofs of theorems about AIM loops produced by Veroff [7]. Many of the infer-
ences in the proofs are paramodulations from an equation and have the form

s = t u[θ(s)] = v

u[θ(t)] = v

where s, t, u, v are terms and θ is a substitution. For the most common equations s = t,
we gathered corresponding pairs of terms

(
u[θ(s)], u[θ(t)]

)
which were rewritten from one to

another with s = t. We put the pairs to separate buckets (depending on the corresponding
s = t): in total 8 buckets for ground rewrites (where θ is trivial) and 12 for nonground ones.
These constituted training sets for our experiments. Some examples from these data sets are
presented in TPTP format in Table 1.

The polynomial data set: This is a synthetically created data set where the examples are
pairs of equivalent polynomial terms. The first element of each pair is a polynomial in an
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Table 1: Examples in the AIM data set.
Rewrite rule: Before rewriting: After rewriting:
b(s(e,v1),e) = v1 k(b(s(e,v1),e),v0) k(v1,v0)

o(V0,e) = V0 t(v0,o(v1,o(v2,e))) t(v0,o(v1,v2))

k(V0,k(V1,V2)) = k(V1,k(V0,V2)) l(k(v1,k(v0,v2)),k(v0,v2),v3) l(k(v0,k(v1,v2)),k(v0,v2),v3)

Table 2: Examples in the polynomial data set.
Before rewriting: After rewriting:
(x * (x + 1)) + 1 x ^ 2 + x + 1

(2 * y) + 1 + (y * y) y ^ 2 + 2 * y + 1

(x + 2) * ((2 * x) + 1) + (y + 1) 2 * x ^ 2 + 5 * x + y + 3

arbitrary form and the second element is the same polynomial in a normalized form. The
arbitrary polynomials are created randomly in a recursive manner from a set of available (non-
nullary) function symbols, variables and constants. First, one of the symbols is randomly
chosen. If it is a constant or a variable it is returned and the process terminates. If a function
symbol is chosen, its subterm(s) are constructed recursively in a similar way. Several data sets
of various difficulty were created by varying the number of available symbols and the length of
the polynomials. Each data set consists of 300000 examples, see Table 2 for examples.

Experiments

Several experiments were conducted using an established NMT implementation [8] with pa-
rameters inherited from [12]. The training terms were given to NMT as linear sequences of
symbols. First, NMT models were trained for each of the 20 rewrite rules in the AIM data set.
It turned out that the models, as long as the number of examples was greater than 1000, were
able to learn the rewriting task with high accuracy – reaching 90% on separated test sets. On
the joint set of all rewrite rules (consisting of 41396 examples) the performance was also good
– 83%. This means that the task of applying single rewrite step seems relatively easy to learn
by NMT. Then experiments on more challenging but also much larger data sets for polynomial
normalization were performed. Depending on the difficulty of the data, accuracy on the test
sets achieved in our experiments varied between 70% and 99%. Some of the results are shown
in Table 3.

Conclusions and future work

NMT is not typically applied to symbolic problems, but surprisingly, it performed very well for
both described tasks. The first one was easier in terms of complexity of the rewriting (only one
application of a rewrite rule was performed) but the number of examples was quite limited. The
second task involved more difficult rewriting – multiple different rewrite steps were performed to
construct the examples. Nevertheless, provided many examples, NMT could learn normalizing
polynomials.

This motivates us to extend our work in two directions. Firstly, more interesting and difficult
rewriting problems for NMT need to be provided for better delineation of the strength of the
NMT models. Secondly, we are going to develop and test new kinds of NMT models tailored for

Table 3: Choosen results of experiments with polynomials. (Characteristic of formulas concerns
input polynomials.)

Function symbols Constant symbols Number of variables Maximum length Accuracy on test
+, ∗ 0, 1 1 30 99.28%
+, ∗ 0, 1 3 50 88.20%
+, ∗ 0, 1, 2, 3, 4, 5 5 50 83.47%
+, ∗, ˆ 0, 1, 2 3 50 71.81%
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the problem of comprehending symbolic expressions. Specifically, we are going to implement an
approach based on the idea of treeNN, which may be another effective approach for this kind
of tasks [3, 9, 2].

References

[1] Grzegorz Bancerek, Adam Naumowicz, and Josef Urban. System description: XSL-based trans-
lator of Mizar to LaTeX. In Florian Rabe, William M. Farmer, Grant O. Passmore, and Abdou
Youssef, editors, Intelligent Computer Mathematics - 11th International Conference, CICM 2018,
Hagenberg, Austria, August 13-17, 2018, Proceedings, volume 11006 of Lecture Notes in Computer
Science, pages 1–6. Springer, 2018.

[2] Saikat Chakraborty, Miltiadis Allamanis, and Baishakhi Ray. Tree2tree neural translation model
for learning source code changes. CoRR, abs/1810.00314, 2018.

[3] Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefenstette. Can neural
networks understand logical entailment? In International Conference on Learning Representations,
2018.
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2017, Proceedings, volume 10499 of Lecture Notes in Computer Science, pages 12–27. Springer,
2017.

[5] Cezary Kaliszyk, Josef Urban, and Jǐŕı Vyskočil. Learning to parse on aligned corpora (rough
diamond). In Christian Urban and Xingyuan Zhang, editors, Interactive Theorem Proving - 6th
International Conference, ITP 2015, Nanjing, China, August 24-27, 2015, Proceedings, volume
9236 of Lecture Notes in Computer Science, pages 227–233. Springer, 2015.
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