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Abstract

Logical reasoning as performed by human mathematicians involves an understanding of
terms and formulas as well as transformations on them. In this paper we consider a number
of syntactic and semantic properties of logical expressions. Based on these we extract and
generate data sets. We develop models that encode these formulas in a continuous vector
space while preserving the aforementioned properties. We train, evaluate and compare
multiple models on the extracted data sets. Furthermore, we show that these models
generalize to properties they have not explicitly been trained on.

Many previous examples can be found where artificial intelligence technology was applied to (in-
teractive) theorem proving problems. While Farber [2] use simple machine learning algorithms
for proof search in theorem proving, Loos et al. [6] use a deep learning approach. Also other
tasks such as tactic and premise selection have been improved using different types of artificial
intelligence [3, 7, 8, 4]. All of these examples and many more apply their machine learning to
specific problems and extract features, engineer data etc. that precisely describes the problem
at hand. We propose a learned encoding and embedding of (first-order) formulas that can later
be used by more complex as well as naive models alike. Clearly, encodings of formulas need to
carry syntactic and semantic information about the original formula. In addition, one would
like such encodings to be relation-preserving. Ideally, the encoding of two “related” formulas
will carry that relation as well. As an example, when applying these encodings to premise
selection, one could imagine that useful premises would have a vector representation which are
close in distance to the conjecture in question. Similarly, one could imagine application to
clause selection for theorem proving, etc.

Learning Framework We propose a deep learning based encoding. Following the results
from [1], we use CNNs and LSTMs based architectures. Our encoding networks are trained on
char level embeddings as shown in Figure 1. This learning framework essentially consists of two
main parts, the encoding network (which we are mainly interested in) and a set of classifiers.
The models are trained by propagating the loss that is obtained from the classifiers back to
the encoding network. Once the training phase is done, we discard the classifiers and use the
encodings.

Properties The properties which are recognized in the classifiers are extracted beforehand.
For now the considered properties are the subformula relation, modus ponens, term-formula
distinction, well-formedness, unifiability, and alpha-equivalence. It is worth noting that there
are two iterations of the subformula classification, one multilabel classification with one input
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and one binary classification with two inputs. These formulas or pairs of formulas are fed to
the learning framework where each of the formulas is first encoded by the encoding network.
Then, the encodings are used as input to different types of classifiers which, as mentioned
above, propagate the loss back to the encoding. The properties where chosen by considering
the application of the encoding to (interactive) theorem proving. The two main focuses were
1) the structure of first-order formulas, and 2) useful properties for theorem proving. For
the former we chose the properties well-formedness and subformula, whereas for the latter
unifiability and modus ponens is important. The properties such as term-formula classification
and alpha equivalence form an important part in both. Syntacitc and structural properties of
first order logic nowadays form an important part in premise selection[5] whereas unifiability
is an important property of resolution in theorem proving. We leave it up to future work to
consider the minimality or the addition of these or additional properties.

Encoding Models We consider different models for our encoding network. But they can
be split into a group of CNN based models and a group of LSTM based models as shown in
Figure 2. All models first go through and embedding layer. After that, we have either a set
of convolution/pooling layers or a set of LSTM layers depending on the model. On top of the
model specific layers we put a final fully connected layer. We did not mention this explicitly
yet, however we consider two types of encoding networks. Encoding networks that is functions
of the form N — R" and embedding networks, which correspond to N® — R™ where m < n.
The latter of which, is achieved through appending a projection layer to the encoding. Hence,
we get a lower dimensional continuous representation of formulas.

Results The training data and evaluation data is split 9:1 before the training phase. The
evaluation seems to confirm the results achieved in [1] where the CNNs based models outperform
the LSTM based models. The best CNN based models are the ones with a fully connected
layer following the convolution/pooling layers. Of the seven properties that we considered,
the CNN based networks achieved anywhere between 80% and 100%. The 100% results came
from the classification of terms/formulas and alpha-equivalence. Meanwhile the LSTM based
models performed similarly in 4 out of the 7 considered properties. However, they perform
considerably less when being tasked with classifying modus ponens, well-formedness, and sub-
formulas. When trying to recognize a modus ponens inference step, the best LSTMs only
reach an accuracy of 61%, while the best CNNs reach up to 99%. We also used the encodings
and embeddings of formulas to train simpler models such as SVMs. Here, SVMs were able to
recognize whether or not a term contained a variable with an accuracy of 90%. Doing a nearest
neighbor analysis it also seems that the concept of variables are learned by the network.

In the future we aim for two things, adding additional properties as well as incorporating
these encodings in actual theorem proving problems.
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