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In this presentation we are focussing on Automated Theorem Proving (ATP). ATP
traditionally has been part of AI, a discipline which is in the headlines these days as
never before. It is therefore a natural question whether or not ATP might take advan-
tage of the current exorbitant efforts to advance AI R&D. We begin with presenting
arguments which favor an ongoing substantial role for ATP within AI. The arguments
engage a perspective of natural intelligence and its structure as evolved over mankind’s
thousands of years long history.

In recent years, AI often is identified just with learning systems, not only in the
public but also within IT. In fact, learning systems have achieved such impressive results
that the mainstream in the research community currently expects the creation of an
artificial intelligence to be achieveable more or less exclusively by way of learning.

In the early days of AI it was said that it would be much easier to build a system
simulating the work of a math professor than the intelligence of a child. After the recent
breakthroughs in learning this judgment is no more tenable since the child’s learning
could now be simulated to some extent by some appropriate learning system. The math
professor, in addition to his or her abilities learned as a child, invests a lot into his or her
competence to reason logically in a correct and scientific way on the basis of knowledge
acquired in a disciplined manner. The simulation of a math professor hence will require
a combination of techniques including learning as well as knowledge representation and
reasoning (KR) in whatever form, not least in that of ATP. Thus, ATP will remain of
central importance for AI also in the forseeable future.

A more detailed exposition of this analysis of the development of the human be-
havior in everyday circumstances as well as in professional achievements leads to new
lines of research into the details of the composition forming the human mind and in
consequence the human behavior. Such insights influence the way ATP is realized and
integrated in the simulation of mathematical research. One of the goals of the remain-
ing presentation consists in pointing to some of the directions of research deriving from
these insights.

Thus encouraged to continue research in a suitably modified ATP, we present the
basics of the Connection Method (CM), its implementation through a family of theorem
provers, results of experiments with these and challenges for future research in the
directions just indicated. The history of ATP has led to at least three different proof
methods: Resolution, Tableaux, and CM. Among these the CM features the following
advantages.

It has been shown [1] that (an extended version of) the CM can linearly simulate
Resolution. Thus, the performance of any resolution prover could as well be realized
on the basis of the CM. Also, in contrast to Tableaux, the CM performs an extremely
compressed proof search [5]. So in terms of performance, the CM in principle is at



2 Wolfgang Bibel and Jens Otten

least as powerful as its main competitors. In addition, it offers the following striking
advantages.

The CM is unique in that it performs the proof search in terms of the structural fea-
tures of the very formula which is to be proved (illustrated in Fig. 1) rather than destroy-
ing this original structure by adding instances of subformulae (in case of resolution or
instance-based methods) to or decomposing (in case of tableaux) the original formula.
This formula-orientedness minimizes the data to be manipulated in the proof search
and thus, in principle, offers a comparatively optimal mechanism in comparison with
the competing proof methods (just compare the manipulated data in a proof with your
favorite method with that in Fig. 1 for the same formula). In other words, the CM offers
a potentially higher performance than its competitors. Due to a strict goal-orientedness
during the connection-driven proof search, both suggested by the formula-orientedness,
current CM systems do exhibit a comparatively strong performance.

Apart from performance the CM proof search is covering many logics in a com-
pletely uniform way, rendering uniformity as the second striking advantage. There is a
third, yet hardly exploited major advantage of the CM over the competitive methods.
Namely, the formula-orientedness enables the proof process to take a global view over
the object of analysis, an aspect which still offers a great potential for being tapped and
exploited in future research.

The talk introduces the CM in an illustrative way referring the reader to the literature
such as [2, 3, 1, 5] for any details. In this abstract we just show a connection proof
displayed in Fig. 1 for a simple first-order formula F1, consisting of a spanning set of
two connections along with a substitution unifying the connected literals.

∃a(Pa∨¬∃x Qx)→∃y Py∨∀b ¬Q f b with σ = {x1\ f b,y1\a}

Fig. 1. The connection proof for F1.

We then briefly discuss connection calculi, the adequate tools for proof search in the
CM, and their underlying principles leading to the goal-orientedness mentioned above.
A basic connection calculus for first-order logic (fol) involving backtracking was devel-
oped and implemented in high-level PROLOG [12, 18]. The program, called leanCoP,
although comprising only a few PROLOG clauses, shows a performance comparable to
competitive theorem provers consisting of hundreds of thousands of lines of code [18,
11]. Due to its high-level code its correctness, in contrast to the large systems, can be
and has been verified which we regard as an important issue for proof systems [19].
leanCoP operates on formulas in clause form, not on fol formulas in their original form
as illustrated in Fig. 1. A variant of leanCoP has been realized as an OCaml version [9].

A connection calculus for skolemized, but non-clausal fol formulas has also been
developed and implemented in the style of leanCoP as a system called nanoCoP [13, 16]
showing again a comparatively impressive performance. nanoCoP performs the proof
search directly on the structure of the original formula, no translation steps to any clause
form are necessary. It combines the advantages of more natural non-clausal calculi (eg.
sequent calculi), with the goal-oriented efficiency of a connection-driven proof search.
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Hence, it is also significantly easier, to translate the resulting non-clausal proofs back
into a human-readable form.

The CM’s unique uniformity bears its fruits in porting the proof-search technology
developed in one logic into other logics. This way the fol technologies built into leanCoP

and nanoCoP have been ported to many other logics resulting in a uniform set of systems
such as ileanCoP and nanoCoP-i for intuitionistic fol, and MleanCoP and nanoCoP-M for
modal fol, thus forming a large family of uniformly designed and powerful provers [11,
14, 15, 17]. The CM is the unique and unrivalled proof-method in ATP which features
such a wide variety of systems, many of which are outperforming any of its competitors.

At the outset of this abstract we have argued for a suitably modified ATP. In the
presentation we will discuss a few elements in the modifications needed for an ATP
that takes into account the progress in the pertinent scientific disciplines. First of all,
ATP needs to base its research on the best possible proof-method available. As our
research, briefly outlined above, has demonstrated in various ways the CM offers the
best possible basis for the development of powerful systems. So, the time has come for
the community to take a major step towards a change in the method of choice.

This step involves many different aspects. One of those is a greater flexibility in
terms of the underlying logic in particular applications. As we demonstrated the CM
supports this flexibility in the best possible way. Another important aspect refers to the
form of the problems to be proved. While it has become standard in ATP to simplify
matters by using clause form, more advanced techniques have exposed the considerable
disadvantages going along with these simplifications (see eg. [20]). As we have seen,
the CM again supports the avoidance of these disadvantages.

In the latter respect, we have experimentally compared problems stated in non-
clausal form with their transformed versions in clausal form with respect to runtime
and resulting proof size. As one of the results it turns out that the length of the returned
proofs, in terms of the number of connections, is – on average – significantly shorter in
the case of the non-clausal CM of nanoCoP compared to the clause form CM of lean-

CoP. Furthermore, nanoCoP does not only prove problems not proved by leanCoP, but
also a few hundred problems not proved by one of the fastest provers available today.

Among the modifications towards a modern ATP certainly is the integration of
learning techniques into ATP systems, as initiated by members of our research group
already in the 1980’s in the context of our proof system SETHEO [6, 7]. Although the
integration of learning into ATP by now has become a rather active area of research [21,
8], it is far from clear how exactly learning techniques could best support the work in
ATP. It is clear that the way of their integration may strongly differ from one kind of
problems to another.

In order to illustrate this difficulty, we discuss a problem due to Łukasiewicz [10],
∀xyzu Pi(i(ixy,z), i(izx, iux)) ∧ ∀vw (Pv ∧ Pivw → Pw) → ∀abc Pi(iab, i(ibc, iac)).
While Łukasiewicz was able to find a proof for it by hand, current provers need tens
of thousands or even millions of search steps to discover a proof. Also, the effect of
applying a standard learning system to the prover E for learning a better strategy leads to
limited improvement only [4]. What kind of artificial intelligence is needed to improve
our systems to a point where they are able to find the proof of this or other problems in
a more direct way similar to that taken by Łukasiewicz?
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9. Kaliszyk, C., Urban, J., Vyskočil, J.: Certified connection tableaux proofs for HOL Light and
TPTP. In: CPP ’15 Proceedings of the 2015 Conference on Certified Programs and Proofs.
pp. 59–66. ACM (2015)

10. Łukasiewicz, J.: The shortest axiom of the implicational calculus of propositions. Proceed-
ings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences 52, 25–33
(1948), https://www.jstor.org/stable/20488489

11. Otten, J.: leanCoP 2.0 and ileanCoP 1.2 – High performance lean theorem proving in classi-
cal and intuitionistic logic (system descriptions). In: Armando, A., Baumgartner, P., Dowek,
G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 283–291. Springer, Heidelberg (2008)

12. Otten, J.: Restricting backtracking in connection calculi. AI Communications 23, 159–182
(2010)

13. Otten, J.: A non-clausal connection calculus. In: Brünnler, K., Metcalfe, G. (eds.)
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