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Abstract

We present ongoing work being performed to utilize Artificial Intelligence for proof
search in the Coq theorem prover. In a similar vein as the TacticToe project for HOL4 [4],
we are working on a system that finds proofs of goals on the tactic level, by learning
from previous tactic scripts. Learning on the level of tactics has several advantages over
more low-level approaches. First, this allows for much coarser proof steps, meaning that
during proof search more complicated proofs can be found. Second, it allows for the usage
of custom built, domain specific tactics that where previously defined and used in the
development. This will allow for better performance of the system in very specialized
domains. Currently our system is not yet capable of proof search but does support live
tactic learning and provides feedback to the user in the form of tactic suggestions. The
rest of this abstract will describe the required components of our system and an evaluation
of our prediction system.

Proof Recording The first component of the system is the recording of previous proofs. As
said, this is done on the level of tactics. When a tactic script is executed, we record the goal
state before and after the execution of each tactic. The diff between the state before and after
the tactic then represents the action that has been performed by a tactic. By recording many
of these instances for a tactic, we create a database that contains an approximation of the
semantic meaning of tactics.

A major question here is what exactly constitutes a tactic in Coq. On a low level, Coq
utilizes a backtracking monad in which tactics can be written [8]. This monad is not immediately
accessible by end-users. For that, a number of tactic languages exist that are then compiled
into the backtracking monad. The most used one is the Ltac language [3]. In an ideal world,
we would record tactics on the level of the proof monad since that would allow us to record
tactics from all existing tactic languages. However, this turns out to be a major technological
challenge. Therefore we have chosen to only record tactics of the Ltac language.

Withing the Ltac language, it is also not immediately clear what a tactic is. One option is
to decompose a script into a series of primitive tactic invocations, and record those. On the
other side of the extreme, one could view every vernacular command as one whole tactic. The
first option means that the advantages of the system are greatly diminished, because then we
are working on a very low level and no custom tactics will be recorded. The second option
means that almost all tactics will be unique. The best solution is likely to lie somewhere in
between. At the moment, we see every vernacular command as one tactic, with the exception
of tactic composition and tactic dispatching. In order to record a tactic script, conceptually
we replace the tactic with a custom recording tactic that receives the original tactic as an
argument. For example, the tactic script tac1; [tac2 | tac3]; tac4 will be converted to
r (tac1); [r (tac2) | r (tac3)]; r (tac4), where r is the recording tactic. The record-
ing tactic first records the proof state before the tactic, then executes the original tactic and
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finally records the proof state after the tactic. Our current approach also means that if tactics
require arguments, then every instance of this tactic with a different argument will be seen as a
unique tactic. In the future we intend to change this by also performing some machine learning
on the parameters of tactics.

Tactic recording can happen both in batch mode and interactive mode. When recording
in batch mode, an entire Coq file is processed and a file containing the recorded data of all
tactic invocations is outputted. This file can later be used for predictions in other Coq files. In
interactive mode our system follows the actions of the user. This means that when a tactic is
executed, the system immediately learns from this. When a tactic is removed from the script the
system also automatically unlearns that tactic. This ensures that what we learn is consistent
with what would be learned is the script gets executed in batch mode.

In order to achieve this, our system is rather deeply integrated with the Coq system itself.
The code is writted as a Coq plugin, but also requires a few minor modifications to the Coq
source code. This level of integration is a distinguishing feature compared to existing machine
learning systems for Coq. Our system is fully implemented in Ocaml and has no external
dependencies. The ML4PG system [9] also provides tactic predictions and other statistics but
is instead integrated with the Proof General [1] proof editor and requires connections to Matlab
or Weka to function. The SEPIA system [5] provides proof search using tactic predictions and
is also integrated with Proof General. It should be noted, however that their proof search is
only based on tactic traces and does not make predictions based on the proof state. Finally,
GamePad [6] is a framework that integrates with the Coq codebase and allows machine learning
to be performed in Python. Similar to our system this is in the early stages of development
and no evaluation of tactic prediction has been performed yet.

Tactic Prediction After creating a database of tactics and recorded proof states, we now
wish to predict the correct tactic to use in order to make progress in a new, unseen proof state.
For this, we must find a proper characterization of the proof states. For our initial prototype,
we have opted to reuse feature characterization that is already present in the CoqHammer
system [2]. CoqHammer characterizes a formula as a vector containing all identifiers and pairs
of adjacent identifiers in the abstract syntax tree. To find a list of likely matches for a new
goal, a fast k-nearest neighbor algorithm is run on the vectors. We compare neighbors using
the Jaccard similarity with TF-IDF weighted features as described by Kaliszyk and Urban [7].

In order to evaluate our predictions, we use Coq’s standard library. During the compilation
of the library, before every tactic invocation we try to predict the correct tactic using the
database collected until that point. We then check if that tactic corresponds with the tactic
used in the source file. The standard library consists of 145866 tactic invocations. If one where
to predict a random tactic from the database a success rate of 4.9% can be expected. The best
possible success rate lies at 67.2%. This is because the correct tactic is not always present in
the database. Using the machine learning method described above, we are able to predict the
correct tactic 21.7% of the time. When we look for the correct tactic in the top 10 predictions
we can increase this number to 47.7%. We also performed an evaluation using a naive Bayes
classifier. The results are rather similar with a prediction rate of respectively 20.8% and 45.3%.
We expect that even simpler machine learning techniques will also perform reasonably well.

Proof Search From the previous paragraph it becomes clear that it is unlikely that the tactic
prediction system will predict the correct tactic every time. For this reason, a proof search must
be performed. In the TacticToe system for HOL4, initially an A*-style algorithm was used to
guide the search. Later, taking inspiration from AlphaGo Zero [10] a Monte Carlo Tree Search
algorithm was used. We are currently working on a similar search system. This has turned out
to be a challenge because a tactic that was intended for one location in a script can not always
easily be executed in a different location of a script.
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