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Introduction: Lemmas in Math and ATPs

In mathematics a lemma is generally used to denote an intermediate result. A mathematician
or student proves some lemmas and then uses these lemmas in the proof of a target theorem.
Sometimes lemmas are useful in multiple theorems (such as Schur’s Lemma1), sometimes they
are didactic or make for a clearer proof. Automated theorem provers (ATPs) such as E prover
[10] struggle with finding long proofs. There are various (sometimes handmade) tools [9, 8, 3, 5]
to heuristically identify ’interesting’ or ’meaningful’ steps in ATP proofs and sometimes to better
present them to humans. We believe that improved automated determination of lemmas in an
ATP proof or proof-search will help ATPs prove more difficult theorems.

The first part of this research proposal describes how to measure the degree to which an E
proof step is a useful lemma. The second part describes two attempts to solve the classification
task and the reasons why we believe graph neural networks could be suitable for proof analysis.

Measuring the Usefulness of Proof Lemmas

Setting: Formally, we view lemmas as logical cuts. Given axioms Γ and a conjecture C we
call L a lemma if Γ ` L and Γ, L ` C hold, which necessitate Γ ` C. However in saturation-
style refutational clausal ATPs like E, proofs are of the form Γ,¬C ` ⊥. Therefore we use
the law of excluded middle instead: Γ, (L ∨ ¬L) ` C allows us to split the proof of C into two
sub-problems: Γ, L ` C and Γ,¬L ` C. This formulation likely leads to faster lemma proofs as
many proof clauses in E are derived from the negated conjecture ¬C.2

Proof shortening ratio: To measure whether the introduction of a lemma L facilitates an
ATP proof of C given Γ, we define a proof shortening ratio of L wrt. Γ and C, or shortly
psr(L,Γ, C). The definition uses the length of an ATP proof search, denoted as |Γ ` C| 3 for

each (sub)problem: psr(L,Γ, C) = |Γ,L`C|+|Γ,¬L`C|
|Γ`C| . If psr(L,Γ, C) < 1, then L can be said to

help E prove C from Γ faster: L is a good lemma.

Dataset: We have created a dataset consisting of 3161 CNF problems from the Mizar40
dataset [4] and their E proofs. The proofs were all found by a fixed single E strategy. For each
such E proof P of Γ ` C and each of P ’s proof clauses LP

i , we introduce LP
i as a lemma and

run E on both subproblems Γ, LP
i ` C and Γ,¬LP

i ` C, recording psr(LP
i ,Γ, C).

There are 230528 proof clauses in total, of which 98472 are axioms and negated conjectures.
There are 44895 positive examples 4 and 87161 negative examples

∗Supported by the ERC Consolidator grant no. 649043 AI4REASON and by the Czech project AI&Reasoning
CZ.02.1.01/0.0/0.0/15 003/ 0000466 and the European Regional Development Fund.

1https://en.wikipedia.org/wiki/Schur’s_lemma
2Another technical reason for this formulation is to avoid dealing with the skolem symbols from ¬C in L.
3We use the number of given clause loops in the E proof.
4Good lemmas, such that psr(L,Γ, C) < 1 and 154 with psr(L,Γ, C) = 1 (we treat them as positives too).
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Lemma Classification

Ideally one wants to generate hypothesized lemmas given Γ and C, or to scan an incomplete
proof-search and identify lemmas to add to Γ. As a first step, we explore the problem of
classifying existing E proof lemmas as good or bad. We use ENIGMA features [2] to represent
the clauses in the dataset 5. Because there are 219724 features, a Singular Value Decomposition
is computed via the scikit-learn [7] library to reduce the dimensionality to 300. Moreover, only
15000 clauses are used so that the adjacency matrix can fit in GPU memory. As a baseline we
use scikit-learn’s support vector machine classifier SVC. To counteract the imbalanced dataset,
positive examples are weighted at 2x negative examples.

Graph Attention Networks (GATs): Mathematics is full of graphs. Formulas can be
represented as trees or as graphs [12]. Proofs are directed acyclic graphs. And mathematical
theories consist of dependency graphs. We want to test the hypothesis that the graph structure
of a proof will prove useful for identifying lemmas: what are L’s parents and children, and
via what inference rules are they derived? A proof-graph captures this structure. There are
many recent developments in applying neural networks to graph data [6, 1]. Graph convolution
operators transform a node’s neighbors into the node’s new features. The new idea in GATs6 [11]
is to use self-attention to learn how to weigh neighboring nodes depending on their feature
vectors. We chose GATs for their expressive simplicity. The two primary parameters to tune
are the number of attention heads at each layer and the number of hidden units, the size of
the feature vector, at the next layer. In addition we added a dense tanh layer to the end
of the network, which may help the network to do regression rather than classification. In
the case of proofs, each graph attention layer expands the influence on lemmas’ classification
based on parents and descendants in the proof graph. A drawback is that the proof graph is
represented just as an adjacency matrix. Inference steps defining edges are not multi-edges,
and must be represented numerically. Formulas must be represented vectorially, and how to do
this effectively is a burning research topic.

Results: Because the goal is to predict good lemmas, the results are analyzed in terms of
positive examples only. Recall is the accuracy on good lemmas. Precision measures the degree
to which only good lemmas are classified as good. F-score is defined by 2 ∗ precision∗recall

precision+recall
.

SVC achieves 0.45 precision and 0.64 recall with an F-score of 0.53 on the 10% test set.
The best GAT setting used regression with 64 units in the tanh-layer, [64, 32] for hidden-unit
size and 3 attention heads per layer. This achieves 0.45 precision, 0.72 recall, and an F-score
of 0.55. The total GAT accuracy is 55%, and total SVC accuracy is 74%. The precision means
that 45% of predicted good lemmas are actually good.

Discussion and Future Directions The GATs so far do not perform much better than
SVM. This could be due to the architecture, due to the problem difficulty, or due to the
limitations of the ENIGMA features used in both experiments. Many lemmas have psr close
to 1, which may make disambiguation hard.

The ML methods come close to achieving high recall with greater than 50% precision,
which could be good enough for further ATP experiments. We also plan to experiment with
similar datasets extracted directly from the human proofs in ITP libraries, where the lemma
representation (e.g. in the declarative Jaskowski-style proof systems) may be quite different
and less dependent on the particular ATPs and their strategies.

5Clauses are translated into fixed-length numeric vectors via (top-down-)oriented term-tree walks of length
3 as features. For example, a unit clause “P (f(a, b))” contains only features “(P, f, a)” and “(P, f, b)” (see [2,
Sec. 3.2] for details).

6See http://petar-v.com/GAT/ for a better introduction.
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