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An essential part of mathematics and the work of a mathematician is to produce conjectures.
This is also an important problem in automated theorem proving. (Un)fortunately, already
humans have different opinions on what is a good conjecture and hence an objective function
for ranking conjectures is hard to specify. It is even less clear how conjectures are discovered.

There have been various attempts to produce conjectures automatically. Well known exam-
ples like Lenat’s AM (Automated Mathematician) [9], a more specialized Graffitti by Fajtlow-
icz [4], and Colton’s HR [3] are based on human curated rules for generating conjectures. In
small domains, exhaustive brute force generation can be useful, in particular when controlled
by a type system and further semantic pruning [7].

Using Distributed Representations for Conjecturing: Our approach is different. We
do not want to write down rules describing interesting conjectures directly, but we would like to
learn meaningful conjecturing from a large corpus of mathematical proofs. For that, a better
semantic understanding of such corpora is needed. It is possible to use distributional semantics
approach, where we try to learn semantic similarities among concepts solely based on their co-
occurrences in a corpus. This has proven to be very successful in computational linguistics [10].
A notion (concept) is then represented by a low-dimensional vector. One of the interesting
aspects of such a representation are analogies via linear algebra. Let v∩, v∪, and v∧ be the
vector representations of ∩, ∪, and ∧, respectively. Then we can answer a question “What is
to ∧ as ∪ is to ∩?” by finding v such that v∧ − v is most similar to v∩ − v∪. Such analogies
can be used for free-style conjecturing similar to [6].

A straightforward application of this idea is to learn such representations over a large formal
library, in our case we use the Mizar [2] Mathematical Library (MML). Given a statement s,
for example, x ∩ y = x → x ∪ y = y, we can identify an important notion in s that we would
like to shift, e.g., ∩ represented by v∩. Now we look for a vector that is close to v∩ such that
it is a binary function. If we are lucky v∧ is close and hence we would like to replace ∩ in s by
∧. We should also replace ∪ by a binary function represented by a vector that is to v∪ as v∧
is to v∩. It could be v∨ and hence we obtain x ∧ y = x→ x ∨ y = y as a new statement.

However, here we have made several decisions and it is rather unclear how to make them
automatically. Before we start to discuss them, it is worth mentioning that our situation is
significantly different from the situation in natural language processing (NLP). We use the
Mizar formal library so for every statement we have a parse tree. Moreover, if we produce a
new statement from an old one, we can try to check by an automated theorem prover (ATP)
whether it is provable or disprovable, because we can work directly with a TPTP [11] translation
of the Mizar statement [12]. Although it is generally very difficult to disprove a statement, in
our case it is possible to do that for trivially invalid statements, which we will often produce.
Similarly, we can filter trivially valid statements.

Now back to our problem. We can use a distributed representation of notions and statements
such as [1]. Given a statement s we can find an important notion N in it and shift it (i.e.,
its vector). Here N should be a predicate, function, or a constant. Once we do that, we can
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look for a semantically similar notion of the same type. This search can be unrestricted, or
we can look for notions that, e.g., appear only in different Mizar articles. When we find a
suitable notion (or more notions), we can start to shift notions in our statement from the most
important to the least important. It is unlikely that a vector for a new notion is exactly at the
position where we expect it, therefore we can use the previous shifts to correct the new ones.
The question when to stop shifting and keep the rest of the statement intact can be left open,
because we can generate all possible variants and remove those that are trivially (in)valid.

This procedure can be improved in various ways, e.g., by using a beam search with the
possibility to keep a notion intact even when less important notions are shifted. However, so
far we have obtained only weak results with this method. It probably suffers from the fact that
it is hard to keep all parts synchronized. A single error can spoil the whole translation, and
even more importantly, it is usually necessary to shift different parts of statements differently.

Consistency by NMT: The recently developed neural machine translation (NMT) archi-
tectures provide a different and possibly better approach. It was shown recently that we can
use NMT for simple informal to formal translations [14]. Here, the above mentioned semantic
relations between the notions are learned as part of the training process. Moreover, the inner
consistency of the translated result is controlled directly by NMT. That is even incorrect results
are likely to parse and the notions are combined meaningfully. For example, in the encoder-
decoder neural architectures a hidden state (vector) characterizing the translation done so far
is updated after each decoding step, and the choice of the next decoded symbol is statistically
conditioned on the state, making the resulting combinations of symbols statistically plausible.

We can formulate our conjecturing task as a translation problem—translate an already
known statement s into a conjecture t. How can we produce a sufficient amount of training
data { (s, t) : s translates into t } for such a task? Assume we have a statement s and we can say
that statements t1, . . . , tn in our library are somehow relevant to s. We can then try to confuse
NMT by adding n training examples {(s, t1), . . . , (s, tn)} and hence NMT will then attempt to
translate s into a statement that is most similar to all t1, . . . , tn.

For an initial experiment, we produce abstracted common patterns (e.g. commutativity,
associativity, etc.) from all Mizar toplevel statements using Gauthier’s patternizer [5] used
previously for concept alignment and conjecturing based on them [6]. The patternizer finds
about 16000 patterns that generalize at least two statements. From them we create a corpus
of about 1.3 million (non-unique) translation pairs by making an input-output pair from all
statements that are instances of the same pattern. This means that NMT will be trained to
analogize on many examples, and due to the large non-determinism in the training data it may
produce a new formula that will likely be syntactically consistent. This is indeed often the case
on a test set of about 30000 unique statements that after the training result in about 16000
formulas that do not appear in MML. A very simple example generated by this conjecturing
approach is (X ∩ Y ) \Z = (X \Z)∩ (Y \Z) produced from (X ∪ Y ) \Z = (X \Z)∪ (Y \Z) .

Although it is a trivial duality statement, it should be noted that it was produced completely
automatically without any intervention from outside and it is not in the Mizar library. Moreover,
there is no need to check for a correct substitution, cf. [5], this part is handled by NMT itself.
This statement can be proved automatically by the MizAR hammer [13, 8]. Examples of false
but syntactically consistent conjectures generated automatically in this way include:

for n, m being natural numbers holds n gcd m = n div m;

for R being Relation holds with_suprema(A) <=> with_suprema(inverse_relation(A));

In this initial experiment, we say that two statements with a common pattern are relevant to
each other. There are many other untested options, for example, we can say that a statement
t is relevant to s if t occurs in a proof of s, or vice versa.
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