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Introduction

A hammer [5] for an interactive theorem prover (ITP) [13] typically translates an ITP goal into
a formalism used by an automated theorem prover (ATP) [16]. Since the most successful ATPs
have so far been first-order, the focus has been on first-order translations. There is however
interest in producing ATPs working in richer formalisms, such as THFO [3], THF1 [10], and
TFF1 [6]. An interesting related task is to create a (grand) unified large-theory benchmark that
would allow fair comparison of such systems and their integration with premise-selectors [1]
across the different formalisms. As a step towards creating such benchmarks we would like to
use translations that are TD-abstractions [11] and behave similarly on first-order formulas.
HOL4 [17], like many other ITPs, is based on an extension of Church’s simple type theory [§]
that includes prefix polymorphism and type definitions [12]. Without these extensions it would
be possible to directly translate HOL4 terms and propositions into the THFO0 format for higher-
order ATPs such as Satallax [7] and LEO [2, 18]. Tt is nevertheless possible to give a translation
from a goal in HOL4 into a THFO problem that takes some advantage of the HOL4 higher-order
constructs. The essential idea is to give axioms for a higher-order set theory and translate the
HOL4 goal into the higher-order set theory. We propose such a translation here and briefly
compare the result to a first-order translation. We have implemented these translations for
HOL4 and plan to use them for the first (grand) unified benchmarks, generalizing the existing
ones (CakeML [15], HOL4 standard library) used in the CASC LTB competition [19, 20].

Translation to THFO

In order to translate HOL4 into THF0 we begin by including a few basic constants and axioms.
Note that base types o (for propositions) and ¢ (for individuals) are built into THF0. We will
think of elements of type ¢ as being sets. The basic constants we include are as follows:

mem : ¢ — ¢ — o corresponds to the membership relation on sets.

ne : ¢t — o is for nonemptiness. HOL4 types will be mapped to nonempty sets.

ap : ¢t — t — ¢ corresponds to set theory level application.

lam : ¢ — (¢ = ¢) — ¢ is used to construct set bounded A-abstractions as sets.

bool : ¢ is used for a fixed two element set.

arr: ¢+ — ¢ — ¢ is used to construct the function space of two sets.

e p: 1 — ois a predicate which indicates whether or not an element of bool is true or not.
We then include a number of basic axioms summarized as follows: arr A B is nonempty when
A and B are nonempty, lam and ap satisfy typing properties relative to arr and mem, boolean
extensionality, functional extensionality and a beta axiom. If ¢ is interpreted using a model
of ZFC, then the constants above can be interpreted in an obvious way as to make the basic
axioms true.

Given this theory, our translation from HOL4 to THFO can be informally described as
follows. We map each HOL4 type « (including type variables) to a term & of type ¢ for which
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we should always know ne & in the context in which « is used. The invariant can be maintained
by always having a hypothesis ne & when « is a type variable or constant. HOL4 type variables
(constants) are mapped to THFO0 variables (constants) of type ¢. For the remaining cases we
use bool and arr. We map each HOL4 term s : a to a THFO term § of type ¢ for which we should
always know § € & in the context in which s is used. Again, the invariant can be maintained
by including the hypothesis & € & whenever x is a variable or a constant. The ap and lam
constants are used to handle HOL4 application and A-abstraction. The axioms corresponding
to typing rules maintain the invariant. Finally HOL4 propositions (which may quantify over
type variables) are translated to THFO propositions in an obvious way, using p to go from ¢ to
o when necessary. As an added heuristic, the translation makes use of THF0 connectives and
quantifiers as deeply as possible, only using p and § when necessary.

Translation of HOL4 to FOF for Large-theory Benchmarks

Our translation to first-order follows approximately [14] and keeps the same type encoding [4].
However, there are two major differences: We create new constant symbols and give independent
definitions for lambda-abstraction and nested predicates as in [9, 21]. The same constant ¢ used
with two different arities 4, j is translated to two different constants ¢; and c¢;. Arity equations
relating ¢; and ¢; to ¢y are added and can be used to recover the dependency between ¢; and
¢j. Thanks to these modifications, the translation of a formula to first-order does not depend
anymore on formulas co-occuring in the same problem.! This is essential to export large HOL4
theories in a consistent manner for the first-order LTB competition.

Example and Discussion

As a small example, suppose a HOL4 constant B : (&« — a) = (@ — @) = o — « were defined
so that Va. Vf,g:a = a. Vo :a. B f gz = f (g ) were a HOL4 theorem (we call this Bdef).
From this theorem we could prove Va. Va : a. B (Az.z) (Az.2) x = x (we call this Bid) To
translate this to a THFO problem, we would translate Bdef as the axiom

VA.ne A=Vf,g,xz:t. mem f (arr A A) = memg (arr A A) = mem z A=

ap (ap (ap B f) g) w =ap [ (ap g )
and Bid as the conjecture

VA.ne A= Vz:.. memz A= ap (ap (ap B (lam 4 (\z.z))) (lam A (\z.z))) © = =.

Disregarding the type encoding the translation of Bdef to FOF is essentially
Vf,g,x. B3(f,g,$) = ap(f,ap(g,x))

where Bj is an arity 3 function. To translate Bid to FOF, we create two new constants cg
and ¢p, give a first-order definition of ¢; = Az.z as Vz. ¢i(z) = = and an arity equation
V. ¢1(x) = ap(co, x). After this the conjecture can be expressed as Va. Bs(cg, cg, ) = .

One advantage of the THFO translation over first-order translations is that there is no need
to deanonymize A-abstractions inside terms. This means no new names need to be created
simply to represent the problem. Since all names used will be common across a collection of
problems, this may help techniques which learn to do premise selection.

The talk will include results comparing first-order and higher-order provers on HOL4 prob-
lems and discuss examples of possible benefits of using the proposed THFO translation.

IWith the exception of the counter used for generating new fresh constants
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