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1 Given Clause Guidance in Theorem Proving

State-of-the-art saturation-based automated theorem provers (ATPs) for first-order logic (FOL),
such as E [10], are today’s most advanced tools for general reasoning across a variety of mathe-
matical and scientific domains. Many ATPs employ the given clause algorithm, translating the
input FOL problem T ∪ {¬C} into a refutationally equivalent set of clauses. The search for a
contradiction is performed maintaining sets of processed (P ) and unprocessed (U) clauses. The
algorithm repeatedly selects a given clause g from U , extends U with all clauses inferred with
g and P , and moves g to P . This process continues until a contradiction is found, U becomes
empty, or a resource limit is reached. The search space of this loop grows quickly and it is a
well-known fact that the selection of the right given clause is crucial for success.

ENIGMA [5, 6] is an efficient learning-based method for guiding given clause selection in
saturation-based ATPs. ENIGMA is based on a simple but fast logistic regression algorithm
effectively implemented by the LIBLINEAR open source library [4]. In order to employ logistic
regression or a similar machine learning method, all generated first-order clauses need to be
translated to fixed-length numeric feature vectors. This is done by translating each clause to a
multi-set of features which is in turn translated to a numeric vector.

Various possible choices of efficient clause features for theorem prover guidance have been
experimented with [5, 6, 7, 8]. So far our goal has been to develop with fast and practically usable
methods, allowing E users to directly benefit from our work. Related research in developing
neural approaches [2, 9, 11] is of great interest, but so far less practically usable in the context
of a fast saturation-style prover. The original ENIGMA [5] uses term-tree walks of length 3
as features, while the second version [6] reaches better results by employing various additional
features. Which of the additional features are the main cause of the improvement was however,
not investigated. The main goal of this work is to employ experiments with various combinations
of features, in order to estimate the value of every possible features choice. Moreover, we propose
to use another popular machine learning method instead of logistic regression, namely decision
trees and their gradient boosted ensembles, effectively implemented by XGBoost library [3]. In
this way, we shall be able to estimate, which of the features are useful across various machine
learning methods.

2 Experiments with Selection of Clause Features

The following types of features are used in the recent ENIGMA (see [6, Sec.2]):

Vertical Features (V) are (top-down-)oriented term-tree walks of length 3. For example, the
unit clause P (f(a, b)) contains only features (P, f, a) and (P, f, b).
Horizontal Features (H) are horizontal cuts of a term tree. For every term f(t1, . . . , tn) in
the clause, we introduce the feature f(s1, . . . , sn) where si is the top-level symbol of ti.
Symbol Features (S) are various statistics about symbols used in the clause, namely, the
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Figure 1: Number of training problems solved by selected variants.

number of occurrences and the maximal depth for each symbol.
Length Features (L) count the clause length and the numbers of positive and negative literals.
Conjecture Features (C) embed information about conjecture being proved into the feature
vector. In this way, ENIGMA can provide conjecture-dependent predictions.

ENIGMA uses these features to translate clauses to features vectors. See [6] for how these
feature vectors are used for given clause guidance. We experiment with all the possible com-
binations of features. This gives us 30 possible combinations, for example, “VHS” denotes the
variant with vertical, horizontal, and symbol features. The original ENIGMA [5] uses only “V”,
while the enhanced ENIGMA [6] uses “VHSLC”.

We evaluate all possible feature combination on the Mizar MPTP2078 [1] benchmark with
2078 problems as follows. We take a random subset consisting of 200 training problems and
a single good-performing E Prover strategy (denoted “mzr01”), we run E with mzr01 on the
training problems to obtain training samples, and we create a separate ENIGMA predictor
for every possible feature combination. The number of training problems solved by selected
variants are presented in Figure 1. From these preliminary results, we can conclude that there
are variants that perform slightly better on the training problems than “VHSLC”.

Next, we have evaluated all the predictors on all the benchmark (testing) problems with
5 seconds CPU time limit. From these preliminary results, it seems, that there is no clear
winner, that is, no single variant outperforms the others. However, different variants solve quite
complementary problems. The combined performance of all the variants greatly outperforms
both the original strategy and the former ENIGMA. Although for the combined performance we
use in general a 30 times higher time limit, we conclude that there is a great potential. Moreover,
instead of searching for the best feature variant, it seems better to work simultaneously with
several ones. The number of problems solved in time is depicted in graph (1) in Figure 2.
Graphs (2) & (3) of the same figure, demonstrate the effect of ENIGMA guidance on the
number of processed clauses.1 ENIGMA guidance heavily shortens the proof search on the
training problems and on a large number number of testing problems.

The proposed talk will present extended results, including experiments with additional fea-
tures (e.g. from [7]), and with decision trees (XGBoost) used instead of logistic regression
(LIBLINEAR). Moreover, the talk will present the comparison of the combined performance
with the state-of-the-art theorem prover strategies conducted with a comparable time limit.

1Point (x, y) in the graph means that x clauses were processed without ENIGMA while y with ENIGMA on
the same problem. Hence the more points under the diagonal, the better ENIGMA guides the proof search.
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Figure 2: (1) Problems solved by selected strategies in time. Numbers of processed clauses with
and without ENIGMA on (2) training and (3) testing problems.
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