
Reinforcement Learning for leanCoP

Cezary Kaliszyk Josef Urban
Henryk Michalewski Mirek Olšák

AITP 2018

March 28, 2018

Automated Theorem Proving

Historical dispute: Gentzen and Hilbert

Today two communities: Resolution (-style) and Tableaux

Possible answer: What is better in practice?

Say the CASC competition or ITP libraries?

Since the late 90s: resolution (superposition)

But still so far from humans?
We can do learning much better for Tableaux

And with ML beating brute force search in games, maybe?

C. Kaliszyk ML in ATP 2 / 17

leanCoP: Lean Connection Prover [Otten 2010]

Connected tableaux calculus
Goal oriented, good for large theories

Regularly beats Metis and Prover9 in CASC (CADE ATP competition)

despite their much larger implementation

Compact Prolog implementation, easy to modify

Variants for other foundations: iLeanCoP, mLeanCoP

First experiments with machine learning: MaLeCoP

Easy to imitate

leanCoP tactic in HOL Light

C. Kaliszyk ML in ATP 3 / 17

Lean connection Tableaux

Very simple rules:

Extension unifies the current literal with a copy of a clause

Reduction unifies the current literal with a literal on the path

{}, M , Path
Axiom

C , M , Path∪ {L2}
C ∪ {L1}, M , Path∪ {L2}

Reduct ion

C2 \ {L2}, M , Path∪ {L1} C , M , Path
C ∪ {L1}, M , Path

Ex tension

C. Kaliszyk ML in ATP 4 / 17

First experiment: MaLeCoP in Prolog [Tableaux 2011]

Select extension steps

Using external advice

Slow implementation

1000 less inf per second

Can avoid 90% inferences!

leanCoP

cache

advisor

Other
provers

SNoW
learning
system

C. Kaliszyk ML in ATP 5 / 17

What about efficiency: FEMaLeCoP [LPAR 2015]

Very simple but very fast classifier

Naive Bayes (with optimizations)

Approximate features and multi-level indexing

Offline indexing

Indexing for the current problem

Discrimination tree stores NB data

Consistent clausification and skolemization

Performance is about 40% of non-learning leanCoP speed

A few more theorems proved (3–15%)

C. Kaliszyk ML in ATP 6 / 17

What about stronger learning?

Yes, but...

If put directly, huge times needed

Still improvement small

NBayes vs XGBoost on 2h timeout

Preliminary experiments with deep learning

So far quite slow

C. Kaliszyk ML in ATP 7 / 17

Is theorem proving just a maze search?

C. Kaliszyk ML in ATP 8 / 17

Is theorem proving just a maze search?

C. Kaliszyk ML in ATP 8 / 17

Is theorem proving just a maze search?

Yes and NO!
The proof search tree is not the same as the tableau tree!

Unification can cause other branches to disappear.

Provide an external interface to proof search

Usable in OCaml, C++, and Python

Two functions suffice
start : problem→ state

action : action→ state

where
state= 〈action list× goal× path× remaining〉

C. Kaliszyk ML in ATP 9 / 17

Is it ok to change the tree?

Most learning for games sticks to game dynamics

Only tell it how to do the moves

Why is it ok to skip other branches

Theoretically ATP calculi are complete

Practically most ATP strategies incomplete

In usual 30s – 300s runs
Depth of proofs with backtracking: 5–7 (complete)

Depth with restricted backtracking: 7–10 (more proofs found!)

But with random playouts: depth hundreds of thousands!

Just unlikely to find a proof→ learning

C. Kaliszyk ML in ATP 10 / 17

Monte Carlo First Try: MonteCoP

Use Monte Carlo playouts to guide restricted backtracking

Improves on leanCoP, but not by a big margin

Potential still limited by depth

Can we do better?
Arbitrarily long playouts

Learn from the playouts

C. Kaliszyk ML in ATP 11 / 17

Monte Carlo Tree Search + Upper Confidence Bounds for Trees [Szepesvari 2006]

How to search a tree?
Given some prior probabilities

Given success (fail) rates so far

UCT: Select node n maximizing

wi

ni
+ c · pi ·
√

√ ln N
ni

Intuition
Initially proportional to the prior

Later win ratio dominates

We will learn the win ratio

C. Kaliszyk ML in ATP 12 / 17

Monte Carlo Tree Search + Upper Confidence Bounds for Trees [Szepesvari 2006]

How to search a tree?
Given some prior probabilities

Given success (fail) rates so far

UCT: Select node n maximizing

wi

ni
+ c · pi ·
√

√ ln N
ni

Intuition
Initially proportional to the prior

Later win ratio dominates

We will learn the win ratio

MCTS tree for t9_zfmisc_1

prior, pi
wi
n1

visits, ni

O 1.00 0.799 10000

O 0.17 0.606 5625

O 0.64 0.719 4713 ...

O 0.36 0.023 912 ...

O 0.08 0.013 622

X

O 0.20 0.014 76 ...

O 0.32 0.024 113 ...

X

O 0.08 0.011 68

O 0.10 0.007 5 ...

C. Kaliszyk ML in ATP 13 / 17

Learn Policy: Which actions to take?

Even for a single problem

If we know that some branches failed

We can avoid such branches in other parts of the “maze”

Playouts following UCT

After a number of playouts, select the most visited branch

Only continue inside that branch (called big step)

A sequence of big steps ends in a proof, dead end, or is too long

We can either way learn which actions were chosen

With some initial win heuristic (remaining goals, size, constant)

C. Kaliszyk ML in ATP 14 / 17

Learn Value: How likely is a proof state to be provable?

Learn from all bigstep states

One if theorem, zero otherwise

With 150K good value training samples
and 250K good policy training samples

XGBoost policy train time: 4 min, Value train time: 8 min

2000 problems run with 100K inferences, no bigsteps

time (min) Theorems
No learning 1.5 440
Only learn values 5.0 535
Only learn policy 10.5 790
Learn both 11.5 871

C. Kaliszyk ML in ATP 15 / 17

Learn Value: How likely is a proof state to be provable?

Learn from all bigstep states

One if theorem, zero otherwise

With 150K good value training samples
and 250K good policy training samples

XGBoost policy train time: 4 min, Value train time: 8 min

2000 problems run with 100K inferences, no bigsteps

time (min) Theorems
No learning 1.5 440
Only learn values 5.0 535
Only learn policy 10.5 790
Learn both 11.5 871

C. Kaliszyk ML in ATP 15 / 17

Reinforcement from scratch

Starting with no data, and with 1500 playouts per bigstep

round thms
MC 665

1 654
2 718
3 727
4 754
5 748
6 769
7 760
8 776
9 776
............

...........

10 782
11 797
12 796
13 800
14 795
15 794
16 792
17 804

.....
29 815
30 820

C. Kaliszyk ML in ATP 16 / 17

Conclusion

Reinforcement learning on small Mizar data project
UCT, action, value work in connection based setup

Learning from scratch can work even for a single problem

Lots of things to try
Other cost functions

Other learning frameworks

Larger experiments

C. Kaliszyk ML in ATP 17 / 17

