PLAYING WITH AUTOFORMALIZATION OVER
MizAR AND PROOFWIKI

Grzegorz Bancerek Jifi VyskoCil Chad Brown Josef Urban
Czech Technical University in Prague

AITP 2018, Aussois
March 26, 2018

1/21

Two Obstacles to Strong Computer Support for Math

Low reasoning power of automated reasoning methods, particularly over

large complex theories

Lack of computer understanding of current human-level (math and exact

science) knowledge

The two are related: human-level math may require nontrivial reasoning
to become fully explained. Fully explained math gives us a lot of data for
training AITP systems.

- And we want to train AITP on human-level proofs too. Thus getting
interesting formalization/ATP/learning feedback loops.

 In 2014 we have decided that the AITP/hammer systems are getting
strong enough to try this. And we started to combine them with statistical
translation of informal-to-formal math.

One point was existence of “intermediate” informal corpora like ProofWiki
that have a lot of regularity

+ 2014: the first 100 proof sentence patterns cover about 50% of ProofWiki

2/21

Betting Slide from IHP’14, Paris

» In 25 years, 50% of the toplevel statements in LaTeX-written Msc-level
math curriculum textbooks will be parsed automatically and with correct
formal semantics

« Hurry up: | will only accept bets up to 10k EUR total (negotiable)
« More at http://aidreason.org/aichallenges.html

3/21

http://ai4reason.org/aichallenges.html

Formal, Informal and Semiformal Corpora

« HOL Light and Flyspeck: some 25,000 theorems

« The Mizar Mathematical Library: some 60,000 theorems (most of them
rather small lemmas), 10,000 definitions

« Coq: several large projects (Feit-Thompson theorem, ...)

- Isabelle, seL4 and the Archive of Formal Proofs

« Arxiv.org: 1M articles collected over some 20 years (not just math)

» Wikipedia: 25,000 articles in 2010 - collected over 10 years only

« Proofwiki - IATEX but very semantic, re-invented the Mizar proof style

4/21

Our Approach/Plan So Far

« There is not yet much aligned informal/formal data
+ So try first with “ambiguated” (informalized) formal corpora
« Try first with non black-box architectures such as probabilistic grammars

« Which can be easily enhanced internally by semantic pruning (e.g. type
constraints)

 Develop feedback loops between training statistical parsing and theorem
proving

- Start employing more sophisticated ML methods
 Progress to more complicated informal corpora/phenomena

« Both directly: ML/ATP with only cruder alignments (theorems, chapters,
etc)

« And indirectly: train statistical/precise alignments across informal and
formal corpora, use them to enhance our coverage

« Example: word2vec/Glove/neural learning of synonyms over Arxiv

5/21

Work Done So Far: Informalized Flyspeck

» 22000 Flyspeck theorem statements informalized

» 72 overloaded instances like “+” for vector_add
» 108 infix operators
- forget “prefixes” real_, int_, vector_, matrix_, complex_, etc.

- Training a probabilistic grammar (context-free, later with deeper context)
« CYK chart parser with semantic pruning (compatible types of variables)
+ Using HOL Light and HolyHammer to typecheck and prove the results

6/21

Flyspeck Progress

Flyspeck

. 82.5%
AITP 2017 (CYK + semantic pruning + subtree depth 4-8 + new improvements) M 1.99

1 59.2%
77.1%
AITP 2016 (CYK + semantic pruning + subtree depth 4-8) M 1.95
I 55.5%
58.%
IWIL 2015 (CYK + semantic pruning + subtree depth 3) M 1.97
35.%
42.7%
ITP 2015 (CYK + semantic pruning) Il 3.74
19.2%
. 6.7%
CYK1967 W 1.
. 5.4%
0 10 20 30 40 50 60 70 80 90

mtop 20 perfect match W average rank W top 1 perfect match

7/21

Example grammars

"(Type bool)"
"(Type (fun real bool))"

8/21

Informalized Mizar

« More natural-language features than HOL (designed by a linguist)
« Pervasisve overloading

» Declarative natural-deduction proof style (re-invented in ProofWiki)
 Adjectives, dependent types, hidden arguments, synonyms

- Addressed by using two layers:
 user (pattern) layer - resolves overloading, but no hidden arguments
completed, etc.
+ semantic (constructor) layer - hidden arguments computed, types resolved,
ATP-ready

9/21

Examples of Mizar’s Linguistic Mechanisms

definition

let P,R be set;

func P(#)R —-> Relation means

[x,v] in it 1iff ex z st [x,z] in P & [z,y] in R;
end;
notation synonym PxR for P (#)R; end;
definition

let X,Y1,Y2,7Z be set;

let P be Relation of X,Y1;

let R be Relation of Y2, 7%;

redefine func PxR —> Relation of X, 7Z;
end;
notation

let f,g be Function;

synonym gxf for fxg;
end;

10/21

Old ATP-based Approach

« AITP’17: be lazy and use ATP to connect the layers

« About 13000 Prolog-style formulas encoding the relation between
user-level syntax and the semantic (MPTP) encoding

- Also the full set of Mizar typing rules needed for this - ca 30000
background knowledge rules

+ Quite bad: Vampire proves about 40% in 60s, E with our mutant
strategies about 50%

« Improved to about 60% in May 2017 by JU, however this also showed
that our ATP encoding is unsound

- Making it sound would end up even heavier, hence our new approach

11/21

Enhancing our Parser with Mizar-style Algorithms

« Chad Brown: Mizar-style typing and elaboration inside the chart parser

+ The typing and elaboration (of patterns to constructors) proceed in a
mutual recursion

+ Sometimes (in an incomplete parse) type guards need to be assumed

« They can be discharged or the parse may be pruned out at a later stage
(when a bigger part of the formula is parse)

12/21

Elaboration results for toplevel statements

« Input: About 60K Mizar Theorems in Pattern Representation
 Output: Constructor Based Version or Failure or Timeout (20s)
+ About 95% elaborated with no assumed pattern guards

« Another 2% elaborated with some assumed pattern guards

- Roughly 2% fail to fill in some implicit arguments

» Roughly 1% time out

- Things are more tricky when elaborating incomplete parses

« However we finally have a reasonable toolchain to go from ambiguated
Mizar to ATP

» Not ATP-evaluated yet

13/21

First Mizar Results (100-fold Cross-validation)

Mizar

I, 4.6%

subtree depth 4-8 + new improvements . 2.61

I 37.2%
I, 63.7%

subtree depth 4-8 . 2.64

I 36.5%
I 32.9%

subtree depth 2 [l 4.6

I 13.%

0 10 20 30 40 50 60 70

mtop 20 perfect match maverage rank mtop 1 perfect match

14/21

ProofWiki vs Mizar — our CICM’14 Example

File Edit View Go Bookmarks Help

ExAMPLE: PROOFWIKI vS M1ZAR VS MIZAR-STYLE AUTOMATED PROOF

== Theorem ==

Let (S,o) be an [[Definition:Algebraic Struc-
ture|algebraic structure]] that has a [[Definition:Zero
Element|zero element]] z € S. Then z is unique.

== Proof ==

Suppose z; and z2 are both zeroes of (S, o).

Then by the definition of [[Definition:Zero Ele-
ment|zero element]]:

290 z1 = z1 by dint of 21 being a zero;

230 z1 = z9 by dint of z5 being a zero.

S0 21 = 290 21 = 29.

So z1 = zy and there is only one zero after all.

{{qed}}
// NB: Informal proofs are buggy!

Th9: el is_a_left_unity_wrt o &

e2 is_a_right_unity_wrt o implies el = e2

proof

assume that Al: el is_a_left_unity_wrt o and
A2: e2 is_a_right_unity_wrt o;

thus el = o.(el,e2) by A2,Def6 .= e2 by Al,Def5;
end;

z1 is_a_unity_wrt o & z2 is_a_unity_wrt o
implies zl = z2 proof
assume that Al: z1 is_a_unity_wrt o and

A2: z2 is_a_unity_wrt o;

A3: o0.(22,z1) = z1 by Th3,A2; ::[ATP]

A4: o0.(z2,z1) = z2 by Def 6,Def 7,A1,A3; ::[ATP]
hence z1 = z2 by Th9,A1,Def 7,A2; ::[ATP]

end;

15/21

Can We Align Proofwiki with Mizar and Parse 1t?

« Since 2015: Grzegorz Bancerek aligning Mizar and Proofwiki
« Over 500 ProofWiki pages

« Example: https://proofwiki.org/wiki/Arithmetic_iff_Way_
Below_Relation_is_Multiplicative_in_Algebraic_Lattice

« Not just automated translation, but made to fit the math already
developed in ProofWiki

- How do we use it?

16/21

https://proofwiki.org/wiki/Arithmetic_iff_Way_Below_Relation_is_Multiplicative_in_Algebraic_Lattice
https://proofwiki.org/wiki/Arithmetic_iff_Way_Below_Relation_is_Multiplicative_in_Algebraic_Lattice

ProofWiki vs Mizar Again

PW code

PW dis-
play

Mizar

Mizar
parse

Let $\left (S, \preceg\right)$ be an ordered set. Let $x \in S$. Then
$S\left\ x\right\$ is a chain of $\left (S, \preceg\right)S$.

Let (S, <) be an ordered set. Let x € S. Then {x} is a chain of (S, <).

for A being non empty reflexive RelStr for a being Element of A holds {a}
is Chain of A

(Bool for (Varlist (Set (Var A))) being (Type (Q@ListOfAdjectives
(Adjective ($#~nv2_struct_0 non (Attribute ($#nv2_struct_0 empty))))
(Adjective (Attribute ($#nv3_orders_2 reflexive)))) (S#nll_-

orders_2 RelStr)) (Bool for (Varlist (Set (Var a))) being (Type
(@ListOfAdjectives) ($#nml_struct_0 Element) of (Set (Var A))) holds
(Bool (Set ($#nk6_domain_1 {) (Set (Var a)) ($#nk6_domain_1 })) is (Type
(@ListOfAdjectives) ($#nm2_orders_2 Chain) of (Set (Var A))))))

17/21

ProofWiki vs Mizar Issues

The ProofWiki chain can map directly to the Mizar-style subtree
($#nm2_orders_2 chain), possibly additionally aligning chain with
Chain as synonyms.

The ProofWiki TEX text "\1eft\{ {x}\right\}" needs to be mapped
to the Mizar-style subtree (Set (S$#nk6_domain_1 {) (Set (Var
x)) ($#nk6_domain_1_part_1 })).

"ordered set" needs to be mapped to Mizar "non empty
reflexive RelStr".

"Let...Then..." needs to be mapped to Mizar as
"for...holds...". Etc.

18/21

ProofWiki vs Mizar Issues - Proposed Solutions

(1) is just a new grammar rule that can be learned from the treebank.
- The other examples however require more complex tree transformations

« So we added grammar extension that allows evaluation of arbitrary
Lisp-like programs at nonterminal positions

« Following is an example of a subtree (and code) that performs the
mapping (2): (set ("Pw_TeX_Singleton@@E
(lambda (L LSB LB X RB R RSB)

(list (gtree ’S#nk6_domain_1 ’'{) X (gtree
/S#nk6_domain_1_part_1 "})))"

"\left"™ "\{" "{" (Set (Var "x")) "}" "\right"™ "\j;" })

19/21

Learning Lisp Programs

« We plan to learn Lisp-like programs by the following bootstrapping
procedure:

The parser run on the corpus of ProofWiki texts will identify the parts of input
that cannot be parsed yet.

This can be done by using a special low-probability nonterminal "UNKNOWN"
that propagates through most of the grammar rules, marking the failed
fragments.

The failed fragments will be aligned with the corresponding Mizar subtrees.

This yields a corpus of ProofWiki - Mizar pairs where the parsing fails so far.

This corpus can be mined for common frequent patterns.

A Use symbolic learning methods (ILP, Genetic Programming, etc.) to
gradually create a corpus of more and more advanced Lisp-like functions
that build on each other.

Sometimes we’ll add a difficult Lisp function manually.

Bl As usual the most probable parses will be subjected to typechecking and
large-theory ATP, using the whole Mizar library as a background knowledge
and the internal ProofWiki steps as lemmas

20/21

Thanks for listening!

» Questions?

21/21

