
PLAYING WITH AUTOFORMALIZATION OVER

MIZAR AND PROOFWIKI

Grzegorz Bancerek Jiří Vyskočil Chad Brown Josef Urban

Czech Technical University in Prague

AITP 2018, Aussois
March 26, 2018

1 / 21

Two Obstacles to Strong Computer Support for Math

1 Low reasoning power of automated reasoning methods, particularly over
large complex theories

2 Lack of computer understanding of current human-level (math and exact
science) knowledge

� The two are related: human-level math may require nontrivial reasoning
to become fully explained. Fully explained math gives us a lot of data for
training AITP systems.

� And we want to train AITP on human-level proofs too. Thus getting
interesting formalization/ATP/learning feedback loops.

� In 2014 we have decided that the AITP/hammer systems are getting
strong enough to try this. And we started to combine them with statistical
translation of informal-to-formal math.

� One point was existence of “intermediate” informal corpora like ProofWiki
that have a lot of regularity

� 2014: the first 100 proof sentence patterns cover about 50% of ProofWiki
2 / 21

Betting Slide from IHP’14, Paris

� In 25 years, 50% of the toplevel statements in LaTeX-written Msc-level
math curriculum textbooks will be parsed automatically and with correct
formal semantics

� Hurry up: I will only accept bets up to 10k EUR total (negotiable)
� More at http://ai4reason.org/aichallenges.html

3 / 21

http://ai4reason.org/aichallenges.html

Formal, Informal and Semiformal Corpora

� HOL Light and Flyspeck: some 25,000 theorems
� The Mizar Mathematical Library: some 60,000 theorems (most of them

rather small lemmas), 10,000 definitions
� Coq: several large projects (Feit-Thompson theorem, ...)
� Isabelle, seL4 and the Archive of Formal Proofs
� Arxiv.org: 1M articles collected over some 20 years (not just math)
� Wikipedia: 25,000 articles in 2010 - collected over 10 years only
� Proofwiki - LATEX but very semantic, re-invented the Mizar proof style

4 / 21

Our Approach/Plan So Far

� There is not yet much aligned informal/formal data
� So try first with “ambiguated” (informalized) formal corpora
� Try first with non black-box architectures such as probabilistic grammars
� Which can be easily enhanced internally by semantic pruning (e.g. type

constraints)
� Develop feedback loops between training statistical parsing and theorem

proving
� Start employing more sophisticated ML methods
� Progress to more complicated informal corpora/phenomena
� Both directly: ML/ATP with only cruder alignments (theorems, chapters,

etc)
� And indirectly: train statistical/precise alignments across informal and

formal corpora, use them to enhance our coverage
� Example: word2vec/Glove/neural learning of synonyms over Arxiv

5 / 21

Work Done So Far: Informalized Flyspeck

� 22000 Flyspeck theorem statements informalized
� 72 overloaded instances like “+” for vector_add
� 108 infix operators
� forget “prefixes” real_, int_, vector_, matrix_, complex_, etc.

� Training a probabilistic grammar (context-free, later with deeper context)
� CYK chart parser with semantic pruning (compatible types of variables)
� Using HOL Light and HolyHammer to typecheck and prove the results

6 / 21

Flyspeck Progress

7 / 21

Example grammars

Comb

Const Abs

! Tyapp

fun Tyapp Tyapp

fun Tyapp Tyapp

real bool

bool

A0 Tyapp Comb

real Comb Var

Const Comb

= Tyapp

fun Tyapp Tyapp

real fun Tyapp Tyapp

real bool

Const Comb

real_neg Tyapp

fun Tyapp Tyapp

real real

Const Var

real_neg Tyapp

fun Tyapp Tyapp

real real

A0 Tyapp

real

A0 Tyapp

real

"(Type bool)"

! "(Type (fun real bool))"

Abs

"(Type real)" "(Type bool)"

Var

A0

"(Type real)" = "(Type real)"

real_neg "(Type real)"

real_neg "(Type real)"

Var

A0

Var

A0

8 / 21

Informalized Mizar

� More natural-language features than HOL (designed by a linguist)
� Pervasisve overloading
� Declarative natural-deduction proof style (re-invented in ProofWiki)
� Adjectives, dependent types, hidden arguments, synonyms
� Addressed by using two layers:

� user (pattern) layer - resolves overloading, but no hidden arguments
completed, etc.

� semantic (constructor) layer - hidden arguments computed, types resolved,
ATP-ready

9 / 21

Examples of Mizar’s Linguistic Mechanisms

definition
let P,R be set;
func P(#)R -> Relation means
[x,y] in it iff ex z st [x,z] in P & [z,y] in R;

end;
notation synonym P*R for P(#)R; end;
definition
let X,Y1,Y2,Z be set;
let P be Relation of X,Y1;
let R be Relation of Y2,Z;
redefine func P*R -> Relation of X,Z;

end;
notation
let f,g be Function;
synonym g*f for f*g;

end;

10 / 21

Old ATP-based Approach

� AITP’17: be lazy and use ATP to connect the layers
� About 13000 Prolog-style formulas encoding the relation between

user-level syntax and the semantic (MPTP) encoding
� Also the full set of Mizar typing rules needed for this - ca 30000

background knowledge rules
� Quite bad: Vampire proves about 40% in 60s, E with our mutant

strategies about 50%
� Improved to about 60% in May 2017 by JU, however this also showed

that our ATP encoding is unsound
� Making it sound would end up even heavier, hence our new approach

11 / 21

Enhancing our Parser with Mizar-style Algorithms

� Chad Brown: Mizar-style typing and elaboration inside the chart parser
� The typing and elaboration (of patterns to constructors) proceed in a

mutual recursion
� Sometimes (in an incomplete parse) type guards need to be assumed
� They can be discharged or the parse may be pruned out at a later stage

(when a bigger part of the formula is parse)

12 / 21

Elaboration results for toplevel statements

� Input: About 60K Mizar Theorems in Pattern Representation
� Output: Constructor Based Version or Failure or Timeout (20s)
� About 95% elaborated with no assumed pattern guards
� Another 2% elaborated with some assumed pattern guards
� Roughly 2% fail to fill in some implicit arguments
� Roughly 1% time out
� Things are more tricky when elaborating incomplete parses
� However we finally have a reasonable toolchain to go from ambiguated

Mizar to ATP
� Not ATP-evaluated yet

13 / 21

First Mizar Results (100-fold Cross-validation)

14 / 21

ProofWiki vs Mizar – our CICM’14 Example

15 / 21

Can We Align Proofwiki with Mizar and Parse It?

� Since 2015: Grzegorz Bancerek aligning Mizar and Proofwiki
� Over 500 ProofWiki pages
� Example: https://proofwiki.org/wiki/Arithmetic_iff_Way_
Below_Relation_is_Multiplicative_in_Algebraic_Lattice

� Not just automated translation, but made to fit the math already
developed in ProofWiki

� How do we use it?

16 / 21

https://proofwiki.org/wiki/Arithmetic_iff_Way_Below_Relation_is_Multiplicative_in_Algebraic_Lattice
https://proofwiki.org/wiki/Arithmetic_iff_Way_Below_Relation_is_Multiplicative_in_Algebraic_Lattice

ProofWiki vs Mizar Again

PW code Let $\left(S, \preceq\right)$ be an ordered set. Let $x \in S$. Then
$\left\ x\right\$ is a chain of $\left(S, \preceq\right)$.

PW dis-
play

Let (S;�) be an ordered set. Let x 2 S. Then fxg is a chain of (S;�).

Mizar for A being non empty reflexive RelStr for a being Element of A holds {a}
is Chain of A

Mizar
parse

(Bool for (Varlist (Set (Var A))) being (Type (@ListOfAdjectives
(Adjective ($#~nv2_struct_0 non (Attribute ($#nv2_struct_0 empty))))
(Adjective (Attribute ($#nv3_orders_2 reflexive)))) ($#nl1_-
orders_2 RelStr)) (Bool for (Varlist (Set (Var a))) being (Type
(@ListOfAdjectives) ($#nm1_struct_0 Element) of (Set (Var A))) holds
(Bool (Set ($#nk6_domain_1 {) (Set (Var a)) ($#nk6_domain_1 })) is (Type
(@ListOfAdjectives) ($#nm2_orders_2 Chain) of (Set (Var A))))))

17 / 21

ProofWiki vs Mizar Issues

1 The Pr1fWiki chain can map directly to the Mizar-style subtree
($#nm2_orders_2 chain), possibly additionally aligning chain with
Chain as synonyms.

2 The Pr1fWiki TEX text "\left\{ {x}\right\}" needs to be mapped
to the Mizar-style subtree (Set ($#nk6_domain_1 {) (Set (Var
x)) ($#nk6_domain_1_part_1 })).

3 "ordered set" needs to be mapped to Mizar "non empty
reflexive RelStr".

4 "Let...Then..." needs to be mapped to Mizar as
"for...holds...". Etc.

18 / 21

ProofWiki vs Mizar Issues - Proposed Solutions

� (1) is just a new grammar rule that can be learned from the treebank.
� The other examples however require more complex tree transformations
� So we added grammar extension that allows evaluation of arbitrary

Lisp-like programs at nonterminal positions
� Following is an example of a subtree (and code) that performs the

mapping (2): (Set ("PW_TeX_Singleton@@@
(lambda (L LSB LB X RB R RSB)

(list (gtree ’$#nk6_domain_1 ’{) X (gtree
’$#nk6_domain_1_part_1 ’})))"

"\left" "\{" "{" (Set (Var "x")) "}" "\right" "\}"))

19 / 21

Learning Lisp Programs

� We plan to learn Lisp-like programs by the following bootstrapping
procedure:

1 The parser run on the corpus of Pr1fWiki texts will identify the parts of input
that cannot be parsed yet.

2 This can be done by using a special low-probability nonterminal "UNKNOWN"
that propagates through most of the grammar rules, marking the failed
fragments.

3 The failed fragments will be aligned with the corresponding Mizar subtrees.
4 This yields a corpus of Pr1fWiki - Mizar pairs where the parsing fails so far.
5 This corpus can be mined for common frequent patterns.
6 Use symbolic learning methods (ILP, Genetic Programming, etc.) to

gradually create a corpus of more and more advanced Lisp-like functions
that build on each other.

7 Sometimes we’ll add a difficult Lisp function manually.
8 As usual the most probable parses will be subjected to typechecking and

large-theory ATP, using the whole Mizar library as a background knowledge
and the internal Pr1fWiki steps as lemmas

20 / 21

Thanks for listening!

� Questions?

21 / 21

