Designing Games of Theorems

Who am 1? What do | like?

* Eautomating proof search]

e S — S — —— —

[_ in expressive logic (HOL) j

using heuristics / ML

Yutaka Ng
yutakang

Block or report user

12 CVUT, CTU, CIRC What did | develop?

IPétL/PaKIIpeR?or IsaE;Tle/HOQ

Proof Strategy Language (PSL) for
Isabelle/HOL

[metatool | ===
aPProach | ko I ‘

: runtime tactic |
. generation |

| extensible '.
. (Eisbach) ¢

| efficient proof |
. generation

: extenswe . " I"
, roof search f; pa alle
s SN "1 search
Iow memory “g=

Yutaka Ng
yutakang

fnaﬂvelsabe"e'

Block or report user

42 CVUT, CTU, CIIRC

try hard: the default strateav

strategy Try_Hard =

Ors [Thens
strategy Basic = Thens
Ors | Thens

Auto_Solve, Thens
Blast_Solve, Thens
FF_Solve, Thens

Thens [IntroClasses, Auto_Solve],
Thens [Transfer, Auto_Solve],
Thens [Normalization, IsSolved],
Thens [DInduct, Auto_Solve],
Thens [Hammer, IsSolved],

Thens [DCases, Auto_Solve],
Thens [DCoinduction, Auto_Solve],

'Subgoal, Basic],
'DInductTac, Auto_Solve],
DCaseTac, Auto_Solve],
'Subgoal, Advanced],
DCaseTac, Solve_Many],

DInductTac, Solve_Many]]

Thens [Auto, RepeatN(Hammer), IsSolved],

Thens [DAuto, IsSolved]]

try_hard vs sledgehammer

The percentage of automatically proved obligations out of 1526 proof obligations
(timeout = 300s)

100%

73%

/5%

50%

25%

0%

try_hard

try hard: the default strateav

strategy Try_Hard =

Ors [Thens
strategy Basic = Thens
Ors | Thens

Auto_Solve, Thens
Blast_Solve, Thens
FF_Solve, Thens

Thens [IntroClasses, Auto_Solve],
Thens [Transfer, Auto_Solve],
Thens [Normalization, IsSolved],
Thens [DInduct, Auto_Solve],
Thens [Hammer, IsSolved],

Thens [DCases, Auto_Solve],
Thens [DCoinduction, Auto_Solve],

'Subgoal, Basic],
'DInductTac, Auto_Solve],
DCaseTac, Auto_Solve],
'Subgoal, Advanced],
DCaseTac, Solve_Many],

DInductTac, Solve_Many]]

Thens [Auto, RepeatN(Hammer), IsSolved],

Thens [DAuto, IsSolved]]

full feature extractor database

preparation phase

>
—

—

:: (tactic_name, [bool])
——
——

* preprocess

large proof corpora
\% I

e g

IPaTII peR
T * decision tree construction
- -
REXZXZZZX

recommendation phase fast feature extractor feature vector

proof L ﬁ
state
proof
engineer proof met
l recommen

2. get smart
uristics

abstract
notion

big data

@ cat Q

Web Images Videos News Meanings Stock

"3 Japan v Safe Search:Strict v AllSizes v All Types

https: //googleblog blogspot.jp/2012/06/using-large-scale-brain- S|mulat|ons-for html
S LAAGsEEFY ¢ USNEE. P Y

https://duckduckgo.com/?q=cat&t=ffab&iar=images&iax=images&ia=images

primrec my append :: "'a list = 'a
append_Nil: "[] @@ ys = ys" |
append _Cons: "(x#xs) @@ ys = x # xs
lemma "([1::nat] @@ [2]) @@ [3]

lemma "([1l::int] @@ [2]) @@ [3]

lemma "([1,2::nat] @@ [3,4]) @@ [5,6]
lemma "([Ax. x+1] @@ [Ax. x+2]) @@ [Ax. x+3]
lemma “([''a""] @ ["'b"'])ea ['c'']
lemma “([''d""] @ ["'e"''])ea [''T"']

lemma "(x @@ y) @@ z

apply auto

Failed to apply pr@nodo:
goal (1 subgoal):
1. (x @@ y) @@ Z%@@ z

Higher-Order functions
type class

e —

polymorphis

A

dependent types
universal quantifier

lambda abstraction

e ————

—

abStI’aCt) where
proof

@@ ([2] @@ [3]) "by auto
@@ ([2] @@ [3]) "by auto
@@ ([3,4] @@ [5,6]) "by auto
x+1] @@ ([Ax. x+2] @@ [Ax. x+3])"by auto
] @ (["'b"'] @ ['"'c'"'])"by auto
] @ (["'e"'] @ [''f''])"by auto
= X @@ (y @ z)"
apply (induct x)
apply auto
goal:

No subgoals!

—

e — e

concise formula that can cover
lots of concrete cases

————

—

———

S ———

small data set for each problem

-

————

e —

different proof for general case

e e ——— —— ——

e

Large Proof Corpora?

‘ J4 Transfer Iearning?x(?)

Security. Performance. Proof.

2
340

G OpenTheory Project ™ A

, 100 ©
opentheory « metis *+ chess
http://www.gilith.com/opentheory/ 11 12 O
- 13 140 o)

Goldbach’s conjecture
https://en.wikipedia.org/wiki/File:Goldbach partitions of the even integers from 4 to 50 rev4b.svg

The sel4 proofs in Isabelle

“Every even integer greater than 2 can be
expressed as the sum of two primes.”

The Kepler ‘onjecture” in
HOL Light

... Four color theorem in Coq

e e e

different proof corpora
bout different problems

e e ———

different logics in
different provers

e e e e

\\uu'
VW

poor proof automation
for expressive logics

4

only small dataset availabl
because of expressiveness

artificial intelligence
for theorem proving!

\\uu-'
\

We need bi

red

ta'

Games

AlphaGo (Zero) problems similar to proving [Silver+2016]

e Node evaluation Really? Self_play?

e Policy decisions
http://cl-informatik.uibk.ac.at/teaching/ss18/mitp/02.pdf

[| want to train my prover using self-play so that it can prove Goldbach’s conjecture.

\/ But how? Proof search is not a 2-player game.
The one that finds a proof of Goldbach’s conjecture first is the winner.

If one prover finds a proof, that’s it. It is only 1 iteration.

But how do you train provers, so that one
prover can eventually find a proof.

For each iteration, | create a set of not-so-difficult conjectures. \@
The one that proves more conjectures is the winner. A

V 1| But how do you create not-so-difficult conjectures?
random? |

But randomly created conjectures are not
| always good training data.

N\

Conjectures with difficult proonfs /\
are important ones. Not really. You need a mechanism to create many
A . . .
7\ conjectures that are relevant to Goldbach’s conjecture.

| can prroduce conjectures by mutating Goldbach’s conjecture. /\

That might work for a small number of conjectures. Not for many conjecture
‘ H

ow? The more conjectures you create, the more valuable they should be.

Games

AlphaGo (Zero) problems similar to proving [Silver+2016]

e Node evaluation R II l, S If I l’
e Policy decisions ea y e p ay
http://cl-informatik.uibk.ac.at/teaching/ss18/mitp/02.pdf

I want to]conjecture

Research hypothe3|s
\/ subgoals proved during heuristic m

' ayer game.

(incomplete) proof search are
useful to tram provers

| The more iterations it goes through, !
, the hlgher the quallty of problems should be! |

42 CVUT, CTU, CIIRC
| . .»& More conjectures you create, the more valuable they should be.

Game of Theorems 1

proved subgoals search tree

big conjecture

I O
I o
I ©
I O
I o
[

Coqg vs

- .
different problems
Parrot vs Crow

for different prover?
o |

I O I O
I ¢ I O
I & I
I O I o
I ¢ I O
[

Game of Theorems 2

proved subgoals search tree

big conjecture
\\uuv'

2
340
5 60
7. 810
100 ©
11 12 10

13 140 Lo} (

_ - ‘| only one prover
K/ can survive?

W _
x’ Owl vs Crow O

—

Game of Theorems 3

Game of Theorems 4

2.
. M

0_50_revah.svg

. . 2
> E

No ordering, no casualty.

Game %f Theorems 4

gﬁ <y o k | [futurework?J
_ 2 VE—

VS /
> ¢

1 academic |
conference? | Research hypotheS|s
useful to tram provers */‘

— subgoals proved during heuristic |
N = B 0
No ordering, no casualty.

(incomplete) proof search are -e @
i 5 :§ vg P g usm -i

VS
<

Thanks,

Overview Repositories 7
Pinned repositories

data61/PSL

@ Standard ’
Yutaka Ng 417 contributions in the last year
yUtakang Apr May Jun Jul
Add a bio Mon

Wed

22 CVUT, CTU, CIIRC o

Learn how we count contributions.

Stars 3

Aug

Followers 2
Sep Oct
O]
]
]

Following 2

Customize your pinned repositories

Contribution settings ~

Nov Dec Jan Feb Mar

Less HENE More

