
Designing Games of Theorems

automating proof search
in expressive logic (HOL)

using heuristics / ML

PSL/PaMpeR for Isabelle/HOL

Who am I? What do I like?

What did I develop?

Proof Strategy Language (PSL) for
Isabelle/HOL

PSL

meta-tool
approach

programming
language

extensible
(Eisbach)

tactics
quickcheck

runtime tactic
generation

extensive
proof search

low memory
usage

efficient proof
generation

native Isabelle
proof script

sledgehammer

parallel
search

almost no code clutter!! easy installation

try_hard: the default strategy

strategy Basic =
 Ors [
 Auto_Solve,
 Blast_Solve,
 FF_Solve,
 Thens [IntroClasses, Auto_Solve],
 Thens [Transfer, Auto_Solve],
 Thens [Normalization, IsSolved],
 Thens [DInduct, Auto_Solve],
 Thens [Hammer, IsSolved],
 Thens [DCases, Auto_Solve],
 Thens [DCoinduction, Auto_Solve],
 Thens [Auto, RepeatN(Hammer), IsSolved],
 Thens [DAuto, IsSolved]]

strategy Try_Hard =
Ors [Thens [Subgoal, Basic],
 Thens [DInductTac, Auto_Solve],
 Thens [DCaseTac, Auto_Solve],
 Thens [Subgoal, Advanced],
 Thens [DCaseTac, Solve_Many],
 Thens [DInductTac, Solve_Many]]

try_hard vs sledgehammer
The percentage of automatically proved obligations out of 1526 proof obligations

(timeout = 300s)

0%

25%

50%

75%

100%

try_hard sledgehammer

20% 16%

73%

57%

DEMO!

try_hard: the default strategy

strategy Basic =
 Ors [
 Auto_Solve,
 Blast_Solve,
 FF_Solve,
 Thens [IntroClasses, Auto_Solve],
 Thens [Transfer, Auto_Solve],
 Thens [Normalization, IsSolved],
 Thens [DInduct, Auto_Solve],
 Thens [Hammer, IsSolved],
 Thens [DCases, Auto_Solve],
 Thens [DCoinduction, Auto_Solve],
 Thens [Auto, RepeatN(Hammer), IsSolved],
 Thens [DAuto, IsSolved]]

strategy Try_Hard =
Ors [Thens [Subgoal, Basic],
 Thens [DInductTac, Auto_Solve],
 Thens [DCaseTac, Auto_Solve],
 Thens [Subgoal, Advanced],
 Thens [DCaseTac, Solve_Many],
 Thens [DInductTac, Solve_Many]]

preprocess

decision tree construction

fast feature extractor feature vector

database

large proof corpora

proof method
recommendation

lookup

preparation phase

recommendation phase

full feature extractor

? proof
state

proof
engineer

PaMpeR

DEMO!

:: (tactic_name, [bool])

from try_hard to try_smart

PSL & try_hard:
more computation

PaMpeR: get smart
using heuristics

try_
sma

rt

?

https://duckduckgo.com/?q=cat&t=ffab&iar=images&iax=images&ia=images

https://googleblog.blogspot.jp/2012/06/using-large-scale-brain-simulations-for.html

ML algorithmbig data abstract
notion

polymorphism

universal quantifier

type class

lambda abstraction

dependent types

concise formula that can cover
lots of concrete cases

Higher-Order functions

ML algorithmmany
proofs

abstract
proof

small data set for each problem

different proof for general case

Large Proof Corpora?

The Kepler “conjecture” in
HOL Light

http://annals.math.princeton.edu/wp-content/uploads/annals-v162-n3-p01.pdf Four color theorem in Coq
https://en.wikipedia.org/wiki/File:Four_Colour_Map_Example.svg

The seL4 proofs in Isabelle

Goldbach’s conjecture
https://en.wikipedia.org/wiki/File:Goldbach_partitions_of_the_even_integers_from_4_to_50_rev4b.svg

“Every even integer greater than 2 can be
expressed as the sum of two primes.”

Transfer learning?

?
(?)

different logics in
different provers

different proof corpora
about different problems

http://www.gilith.com/opentheory/

poor proof automation
for expressive logics

artificial intelligence
for theorem proving!

We need big data!only small dataset available
because of expressiveness really?

Really? Self-play?
I want to train my prover using self-play so that it can prove Goldbach’s conjecture.

But how? Proof search is not a 2-player game.
The one that finds a proof of Goldbach’s conjecture first is the winner.

If one prover finds a proof, that’s it. It is only 1 iteration.
But how do you train provers, so that one

prover can eventually find a proof.
For each iteration, I create a set of not-so-difficult conjectures.

The one that proves more conjectures is the winner.
But how do you create not-so-difficult conjectures?

random?
But randomly created conjectures are not

always good training data.Conjectures with difficult proofs
are important ones. Not really. You need a mechanism to create many

conjectures that are relevant to Goldbach’s conjecture.

http://cl-informatik.uibk.ac.at/teaching/ss18/mltp/02.pdf

How?

I can produce conjectures by mutating Goldbach’s conjecture.
That might work for a small number of conjectures. Not for many conjectures.

The more conjectures you create, the more valuable they should be.

I want to train my prover using self-play so that it can prove Goldbach’s conjecture.

But how? Proof search is not a 2-player game.
The one that finds a proof of Goldbach’s conjecture first is the winner.

If one prover finds a proof, that’s it. It is only 1 iteration.
But how do you train provers, so that one

prover can eventually find a proof.
For each iteration, I create a set of not-so-difficult conjectures.

The one that proves more conjectures is the winner.
But how do you create not-so-difficult conjectures?

random?
But randomly created conjectures are not

always good training data.Conjectures with difficult proofs
are important ones. Not really. You need a mechanism to create many

conjectures that are relevant to Goldbach’s conjecture.

http://cl-informatik.uibk.ac.at/teaching/ss18/mltp/02.pdf

How?

I can produce conjectures by mutating Goldbach’s conjecture.
That might work for small number of conjectures. Not for many conjectures.

The more conjectures you create, the more valuable they should be.

Research hypothesis:
subgoals proved during heuristic

(incomplete) proof search are
useful to train provers.

The more iterations it goes through,
the higher the quality of problems should be!

Really? Self-play?

Game of Theorems!

Crow

Coq

80% 60%

70%

Game of Theorems 1
big conjecturesearch treeproved subgoals

Parrot

Coq vs
Parrot vs Crow

different problems
for different prover?

https://en.wikipedia.org/wiki/File:Goldbach_partitions_of_the_even_integers_from_4_to_50_rev4b.svg

https://en.wikipedia.org/wiki/File:Goldbach_partitions_of_the_even_integers_from_4_to_50_rev4b.svg https://en.wikipedia.org/wiki/File:Goldbach_partitions_of_the_even_integers_from_4_to_50_rev4b.svg

big conjecturesearch treeproved subgoals

70% 80%

Game of Theorems 2

Owl vs Crow

only one prover
can survive?

https://en.wikipedia.org/wiki/File:Goldbach_partitions_of_the_even_integers_from_4_to_50_rev4b.svg

https://en.wikipedia.org/wiki/File:Goldbach_partitions_of_the_even_integers_from_4_to_50_rev4b.svg https://en.wikipedia.org/wiki/File:Goldbach_partitions_of_the_even_integers_from_4_to_50_rev4b.svg

Game of Theorems 3

60% 80%

70%

> >>

What if ?

Coq vs Parrot vs Crow

https://en.wikipedia.org/wiki/File:Goldbach_partitions_of_the_even_integers_from_4_to_50_rev4b.svg

https://en.wikipedia.org/wiki/File:Goldbach_partitions_of_the_even_integers_from_4_to_50_rev4b.svg

https://en.wikipedia.org/wiki/File:Goldbach_partitions_of_the_even_integers_from_4_to_50_rev4b.svg https://en.wikipedia.org/wiki/File:Goldbach_partitions_of_the_even_integers_from_4_to_50_rev4b.svg

> >
>

>

<

Game of Theorems 4

VS

VS

VS

using

using

using
No ordering, no casualty.

https://en.wikipedia.org/wiki/File:Goldbach_partitions_of_the_even_integers_from_4_to_50_rev4b.svg https://en.wikipedia.org/wiki/File:Goldbach_partitions_of_the_even_integers_from_4_to_50_rev4b.svg https://en.wikipedia.org/wiki/File:Goldbach_partitions_of_the_even_integers_from_4_to_50_rev4b.svg

> >
>

>

<

Game of Theorems 4

VS

VS

VS

using

using

using
No ordering, no casualty.

future work?

Research hypothesis:
subgoals proved during heuristic

(incomplete) proof search are
useful to train provers.

academic
conference?

https://en.wikipedia.org/wiki/File:Goldbach_partitions_of_the_even_integers_from_4_to_50_rev4b.svg

Thanks,

