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try hard: the default strateav

strategy Try_Hard =

Ors [Thens
strategy Basic = Thens
Ors | Thens

Auto_Solve, Thens
Blast_Solve, Thens
FF_Solve, Thens

Thens [IntroClasses, Auto_Solve],
Thens [Transfer, Auto_Solve],
Thens [Normalization, IsSolved],
Thens [DInduct, Auto_Solve],
Thens [Hammer, IsSolved],

Thens [DCases, Auto_Solve],
Thens [DCoinduction, Auto_Solve],

'Subgoal, Basic],
'DInductTac, Auto_Solve],
DCaseTac, Auto_Solve],
'Subgoal, Advanced],
DCaseTac, Solve_Many],

DInductTac, Solve_Many] ]

Thens [Auto, RepeatN(Hammer), IsSolved],

Thens [DAuto, IsSolved]]



try_hard vs sledgehammer
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primrec my append :: "'a list = 'a
append_Nil: "[] @@ ys = ys" |
append _Cons: "(x#xs) @@ ys = x # xs
lemma "([1::nat] @@ [2] ) @@ [3]

lemma "([1l::int] @@ [2] ) @@ [3]

lemma "([1,2::nat] @@ [3,4] ) @@ [5,6]
lemma "([Ax. x+1] @@ [Ax. x+2]) @@ [Ax. x+3]
lemma “([''a""] @ ["'b"'] )ea [ 'c'']
lemma “([''d""] @ ["'e"''] )ea [''T"']

lemma "(x @@ y) @@ z

apply auto

Failed to apply pr@nodo:
goal (1 subgoal):
1. (x @@ y) @@ Z%@@ z

Higher-Order functions
type class

e —

polymorphis

A

dependent types
universal quantifier

lambda abstraction
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abStI’aCt ) where
proof

@@ ([2] @@ [3] ) "by auto
@@ ([2] @@ [3] ) "by auto
@@ ([3,4] @@ [5,6] ) "by auto
x+1] @@ ([Ax. x+2] @@ [Ax. x+3])"by auto
] @ (["'b"'] @ ['"'c'"'] )"by auto
] @ (["'e"'] @ [''f''] )"by auto
= X @@ (y @ z)"
apply (induct x)
apply auto
goal:

No subgoals!
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poor proof automation
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Games

AlphaGo (Zero) problems similar to proving [Silver+2016]

e Node evaluation Really? Self_play?

e Policy decisions
http://cl-informatik.uibk.ac.at/teaching/ss18/mitp/02.pdf

[ | want to train my prover using self-play so that it can prove Goldbach’s conjecture.

\/ But how? Proof search is not a 2-player game.
The one that finds a proof of Goldbach’s conjecture first is the winner.

If one prover finds a proof, that’s it. It is only 1 iteration.

But how do you train provers, so that one
prover can eventually find a proof.

For each iteration, | create a set of not-so-difficult conjectures. \@
The one that proves more conjectures is the winner. A

V 1| But how do you create not-so-difficult conjectures?
random? |

But randomly created conjectures are not
| always good training data.

N\

Conjectures with difficult proonfs /\
are important ones. Not really. You need a mechanism to create many
A . . .
7\ conjectures that are relevant to Goldbach’s conjecture.

| can prroduce conjectures by mutating Goldbach’s conjecture. /\

That might work for a small number of conjectures. Not for many conjecture
‘ H

ow? The more conjectures you create, the more valuable they should be.
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| The more iterations it goes through, !
, the hlgher the quallty of problems should be! |
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