Learning to Prove with Tactics

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, Michael Norrish

March 28, 2018
Can we formally prove mathematical formulas automatically?
Our solution

Supervised learning

- Formal library
- Proof recording
- Knowledge base
 - Training
 - Predictors

Proving

- Conjecture
- Proof search
 - Search tree
 - Tactic policy
 - Tactic evaluation
 - Proof minimization
 - Proof
Our solution

Supervised learning

Formal library

Proof recording

Knowledge base

Training

Predictors

Proving

Conjecture

Proof search

Search tree

Tactic policy

Tactic evaluation

Proof minimization

Proof
Formal library: reasoning with inference rules

- axiom
- conjecture
- rule
- lemma
Formal library: reasoning with inference rules

- axiom
- conjecture
- rule
- lemma
Formal library: reasoning with inference rules

- axiom
- conjecture
- → rule
- ○ lemma
Formal library: reasoning with tactics
Formal library: reasoning with tactics

- axiom
- conjecture
- tactic
- goal
Formal library: reasoning with tactics

- axiom
- conjecture
- tactic
- goal
Formal library: tactics

REWRITE_TAC

INDUCT_TAC

METIS_TAC
THENL tactical composes the effect of tactics.
Formal library: composing tactics

THENL tactical composes the effect of tactics.
Formal library: composing tactics

THENL tactical composes the effect of tactics.

```
THENL

METIS_TAC
REWITE_TAC
INDUCT_TAC
```
 THENL tactical composes the effect of tactics.
Formal library: composing tactics

THENL tactical composes the effect of tactics.

\[
\text{THENL} \quad \text{METIS_TAC} \\
\text{REWRITE_TAC} \\
\text{INDUCT_TAC} \\
\text{INDUCT_TAC} \\
\text{INDUCT_TAC} \\
\text{THENL} \\
[\text{REWRITE_TAC}, \text{METIS_TAC}] \\
\]
Demo
Plan

Supervised learning

Formal library

Proof recording

Knowledge base

Training

Predictors

Proving

Conjecture

Proof search

Search tree

Tactic policy

Tactic evaluation

Proof minimization

Proof
Recording

Original proof:

INDUCT_TAC THENL [REWRITE_TAC, METIS_TAC]

Modified proof:

(R numLib.INDUCT_TAC) THENL
 [R boolLib.REWRITE_TAC, R metisLib.METIS_TAC]

Database of tactics:

R (f n) (f (SUC n)) ⇒ transitive R: INDUCT_TAC
n * m ≤ n * p ⇒ (n = 0) ∨ m ≤ p : REWRITE_TAC
INJ f U(:num) s ⇒ INFINITE s : METIS_TAC
...

Plan

Supervised learning

- Formal library
- Proof recording
- Knowledge base
- Training
- Predictors

Proving

- Conjecture
- Proof search
- Search tree
- Tactic policy
- Tactic evaluation
- Proof minimization
- Proof
Prediction algorithm

Algorithm:
Nearest neighbor weighted by TF-IDF heuristics

Effect:
Order goals from the database according to their distance to a target goal.

Remark:
This is algorithm performs premise selection. How do we adapt it to predict tactics?
Policy: choosing a tactic

Database of tactics is a map from goals to tactics.

\[R(f \ n) (f(SUC \ n)) \Rightarrow \text{transitive } R: \text{INDUCT}_TAC \]
\[n \ast m \leq n \ast p \Rightarrow (n = 0) \lor m \leq p : \text{REWRITE}_TAC \]
\[\text{INJ } f \ U(:\text{num}) \ s \Rightarrow \text{INFINITE } s : \text{METIS}_TAC \]

An order on goals induces an order on tactics.

New goal appearing during proof search:
\[\text{LENGTH} (\text{MAP } f \ l) = \text{LENGTH } l \]

Policy for the new goal:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Tactic</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>REWRITE_TAC</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>METIS_TAC</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>INDUCT_TAC</td>
<td>0.0625</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Value function: provability of a list of goals

Database of lists of goals:

- Positive examples: appears in human proofs.
- Negative examples: produced during TacticToe search but do not appear in the final proof.

Value function:
Percentage of positives in the 10 closest lists of goals of a target list of goals.

Future work:
Estimate the number of steps needed to prove a list of goals.
Plan

Supervised learning
- Formal library
 - Proof recording
 - Knowledge base
 - Training
 - Predictors

Proving
- Conjecture
 - Proof search
 - Search tree
 - Tactic policy
 - Tactic evaluation
 - Proof minimization
 - Proof
Training

Improve recorded data to create better predictions during search.
Training: orthogonalization

Issue: Many tactics are doing the same job on a goal g.

Solution: Competition for g where the most popular tactic wins.
Training: orthogonalization

Recorded goal-tactic pair:

\[\text{LENGTH } (\text{MAP } f \text{ l}) = \text{LENGTH l} : \text{INDUCT_TAC} \]

Competition:

<table>
<thead>
<tr>
<th>Tactic</th>
<th>Progress</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDUCT_TAC</td>
<td>Yes</td>
<td>136</td>
</tr>
<tr>
<td>REWRITE_TAC</td>
<td>No</td>
<td>2567</td>
</tr>
<tr>
<td>METIS_TAC</td>
<td>Yes</td>
<td>694</td>
</tr>
</tbody>
</table>

Added to the database:

\[\text{LENGTH } (\text{MAP } f \text{ l}) = \text{LENGTH l} : \text{METIS_TAC} \]

Result: 6 % improvement.
Training: abstraction

Issue: Some theorems are never used inside tactics.

Solution: Abstract all lists of theorems in a tactic and instantiate them depending on the target goal.
Training: abstraction

Abstraction algorithm:

Original : REWRITE_TAC [T1, T2]
Abstraction : REWRITE_TAC X
Instantiation: REWRITE_TAC [T67, T1, T43, ..]

Question: Dow we keep the original or the abstraction ?

Answer: Let them compete during orthogonalization.
Training: preselection

Issue: Predictions are too slow during proof search.

Solution: Preselect 1000 suitable tactics using dependencies.

Dependency: Appear in the same proof.

Result: 15% improvement.
Proof search: search tree
Proof search: advanced tree search
Re-proving: results

Evaluation is "fair". (not totally if you ask Freek)
Only previous proofs are available for training.
TacticToe does not call external provers.

<table>
<thead>
<tr>
<th></th>
<th>HOL4: 7164, 60s</th>
<th>CakeML: 3329, 15s</th>
</tr>
</thead>
<tbody>
<tr>
<td>E prover</td>
<td>2472 (34.5%)</td>
<td></td>
</tr>
<tr>
<td>TacticToe</td>
<td>4760 (66.4%)</td>
<td>1161 (34.9%)</td>
</tr>
<tr>
<td>Total</td>
<td>4946 (69.0%)</td>
<td></td>
</tr>
</tbody>
</table>
Re-proving: proofs of size x
Re-proving: HOL4 proofs found in less than x seconds

![Graph showing the comparison between TacticToe and E prover.](image-url)
Re-proving: percentage of solved HOL4 proof of size x
Minimization and embellishment

Raw proof:

boolLib.REWRITE_TAC [DB.fetch "list" "EVERY_CONJ", ...]
 THEN
BasicProvers.Induct_on [HolKernel.QUOTE "l"]
 THENL
 [BasicProvers.SRW_TAC [],
 simpLib.ASM_SIMP_TAC (BasicProvers.srw_ss ())
 [boolLib.DISJ_IMP_THM, DB.fetch "list" "MAP",
 DB.fetch "list" "CONS_11", boolLib.FORALL_AND_THM]]

Processed proof:

Induct_on 'l' THENL
 [SRW_TAC [],
 ASM_SIMP_TAC (srw_ss ()),
 [DISJ_IMP_THM, FORALL_AND_THM]]
Conclusion

Summary: TacticToe learns from human proofs to solve new goals.

Advantages over ATPs (E prover) for ITP (HOL4) users:

- Includes domain specific automation found in the ITP.
- Generated proofs are human-level proofs.
- No translation or reconstruction needed.
Future work

Enlarge the action space:
 parameter synthesis, sequence of tactics, forward proofs.

Train tactics by evaluating input/output pairs.

Conjecture intermediate lemmas.