
Guiding SMT Solvers with
Monte Carlo Tree Search and Neural Networks

Stéphane Graham-Lengrand Michael Färber

28 March, 2018



Introduction



Inference calculus vs search control

Schulz, 2017
Improving heuristics has been the main source of progress
in proof search!"

De Moura - Passmore, 2013
We present a challenge to the SMT community: to
develop methods through which users can exert strategic
control over core heuristic aspects of SMT solvers. We
present evidence that the adaptation of ideas of strategy
prevalent both within the Argonne and LCF theorem
proving paradigms can go a long way towards realizing this
goal.



Psyche

I Development by SGL
I Architecture that strongly separates inference calculus from

search control
I Adaptation of the LCF approach where kernel’s internal state is

modified by search control primitives until an answer is found
(SAT/UNSAT, Provable/Unprovable):
trusted kernel ensures correctness

I Application to SMT-solving
via the Conflict-Driven Satisfiability paradigm (CDSAT):
lifts conflict-driven clause learning (CDCL) from SAT to SMT

I Handles multiple theories by making a modular list of “agents”
cooperate

http://www.lix.polytechnique.fr/~lengrand/


Modular agents for CDSAT

I contribute background knowledge, such as for Boolean logic or
linear arithmetic

I offer for each state a set of possible decision assignments
(e.g. assign truth value to literal l 7→ true
or rational value to rational variable x 7→ 3/4)

I compute consequences of assignments
(e.g. x + y < 4 and x ≥ 3 implies y < 1)

I detect conflicts (e.g. x < 4 and x > 6)



CDSAT Main Loop
1. Assign values to terms/literals (model building)
2. If no conflict occurs: model exists (SAT)
3. If conflict occurs: analyse conflict and learn lemma

(proof building)
3.1 If learnt lemmas contradict: proof exists (UNSAT)
3.2 Else: revert assignments and backtrack to 1

Data Structures
I Trail of assignments
I Learnt lemmas

Statistics
I 15–4000 decisions/second
I 100–3000 possible decisions

each time

T2

T1

Bool

Bool

T1

T2

model building

proof building

. . .

. . .



All theories at the same level is good - Example

Verification of deep neural nets with ReLU activation functions

(“Is there an input satisfying P such that the output satisfies Q?”)
The internal machinery is Linear Arithmetic + “if then else”.
In theory, can be decided by off-the-shelf SMT-solver.
In practice, traditional SMT-solver would first split on “if then else”
before theory reasoning (because SAT-solver is in the driving seat),
and would therefore timeout.
CDSAT offers more flexibility: giving priority to Linear Arithmetic
decisions rather than Boolean ones speeds up search.
With greater flexibility comes greater need for strategies.



Motivation for AI
Traditional SMT: Lots of hand-crafted heuristics
Do we want to keep on designing new hand-crafted heuristics for
new kinds of decisions?

Psyche
I ⊕ side: separates inference calculus from search control

I answers are correct-by-construction, therefore
I search control possibilities can be explored ad libitum (1)

I 	 side: performance not competitive with state of the art
I suspected runtime overhead due to separating architecture
I suspected runtime overhead due to purely functional kernel
I no clever heuristics implemented so far; (1) not exploited

Hope
AI for heuristical guidance can handle new kinds of decisions, exploit
(1), and somewhat improve performance.



Monte Carlo Tree Search



Illustration

(a) Iterative deepening
without restricted
backtracking.

(b) Iterative deepening
with restricted
backtracking.

(c) Monte Carlo.



Related Work

I AlphaGo (Silver et al., 2016)
I AlphaZero (Silver et al., 2017)
I Chemical Synthesis Planning (Segler et al., 2017)
I Monte Carlo Proof Search (Färber et al., 2017)

https://www.nature.com/articles/nature16961
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1708.04202
http://cl-informatik.uibk.ac.at/users/cek/docs/17/mfckju-cade17.pdf


Monte Carlo Tree Search – Iteration

Monte Carlo Tree T : tree of visited states

1. Pick state s1 among leaves of T using UCT, based on:
I previous reward (exploitation)
I number of traversals (exploration)
I exploration constant: the higher, the more exploration

2. Play random moves (simulation): s1 → s2 → · · · → sn
3. Calculate reward of sn.
4. Add s2 as child of s1 in T (expansion).
5. Update rewards of all ancestors of s2 in T .

I How to bias random moves?
I How to calculate reward of a state?



CDSAT as MCTS Problem

States
I local (MCTS) state: trail of assignments
I global state: learnt lemmas

Moves
I possible decision assignments
I given by modular agents
I simulation is performed until hitting conflict state

Backtracking
native CDSAT backtracking is replaced by MCTS



SAT/UNSAT and Exploitation/Exploration

SAT
search for a single state (needle in a haystack)

UNSAT
explore to learn complementary lemmas (cutting search space)

Exploitation/Exploration

I Exploitation: reward SAT-promising states
I Exploration: bias random moves towards complementary

lemmas for UNSAT
I Exploration constant balances search between SAT and UNSAT



Move Probability

Bias move probability with theory-agnostic heuristics

Activity score (VSIDS)
prefer assigning terms or literals that participated in recent conflicts



Reward

How to estimate proximity of state to SAT?

Supervised learning

1. Traditional:
I SAT states: label with maximal reward
I conflict states: label with Levenshtein distance between conflict

and actual SAT state

2. TD (temporal difference) learning:
label (frequently visited) states with their MCTS reward

State characterisation
I trail of assignments
I generated lemma (if conflict state)
I previous lemmas present at time of conflict

https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Temporal_difference_learning


Learning State Reward



Vector Space Embedding of Formulas

Motivation
I Goal: machine-learn Reward function on states
I many ML methods work on vectors
I vector space embedding of formulas allows us to embed states

Deep Graph Embedding: FormulaNet
I used for premise selection in Wang et al., 2017
I represent formulas as graphs to abstract from variable names
I learn vector representation of graphs with neural networks

http://papers.nips.cc/paper/6871-premise-selection-for-theorem-proving-by-deep-graph-embedding


Graph Embedding

VAR

VAR

P

Q

Figure 1: Making a graph E from a formula.



Vector Space Embedding (1)

Initialisation
Every distinct node v in E is assigned distinct one-hot vector ~x0

v .

Update
Given a node v with degree dv in E , its vector is updated as follows:

~x t+1
v = FP

~x t
v + 1

dv

 ∑
(u,v)∈E

FI(~x t
u, ~x t

v ) +
∑

(v ,u)∈E
FO(~x t

v , ~x t
u)


FP , FI , and FO are realised by neural networks:

FC
dim=256

BN ReLU FC
dim=256

BN ReLU

FC
256

BN ReLU

F
I
/ F

O

concat

F
P

x
v

x
u



Vector Space Embedding (2)

Procedure
I perform n vector update steps
I max-pool all node embeddings to get graph embedding

Table 1: Validation accuracy of FormulaNet-basic on conditional premise
selection for HolStep.

Number of steps 0 1 2 3 4

Accuracy 81.5 89.3 89.8 89.9 90.0

How to evaluate embedding quality during training?
I machine-learn Reward function using embedding
I evaluate with sum of cross-entropy losses over all update steps

https://www.quora.com/What-is-max-pooling-in-convolutional-neural-networks
https://en.wikipedia.org/wiki/Cross_entropy#Cross-entropy_error_function_and_logistic_regression


Conclusion



Summary

Psyche
I inferences and search space well-identified
I prover states are persistent data structures (à la LCF) ⇒

simplify recording of states and state switches during MCTS
I terms, formulas, trails etc. are constructed at most once during

the run (hash-consing) ⇒ use for efficient feature extraction?

MCTS
I bias search towards SAT/UNSAT via exploration/exploitation
I move probability via activity score (VSIDS)
I learn rewards either traditionally or via TD learning
I graph embeddings à la Wang



Project State

Already there
I Psyche
I Generic MCTS (from monteCoP)

both in OCaml

TODO
I integrate Psyche and MCTS modules
I implement vector space embedding of states with TensorFlow
I machine-learn Reward function using embedding
I organise training on example set


	Introduction
	Monte Carlo Tree Search
	Learning State Reward
	Conclusion

